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ABSTRACT 

Understanding how tropospheric variability influences mobile communication 

systems is critical for improving network reliability. This need is especially 

important in regions characterized by rapid atmospheric fluctuations. This study 

presents a quantitative modeling framework for evaluating tropospheric effects on 

mobile network performance using key performance indicators (KPIs). 

Tropospheric parameters including temperature, relative humidity, atmospheric 

pressure, and wind conditions were synchronized with corresponding network 

KPIs. These include Call Setup Success Rate (CSSR), Traffic Channel Congestion 

Rate (TCHCR), Handover Success Rate (HOSR), and Received Signal Strength. 

Statistical techniques comprising Pearson correlation, multiple regression 

modeling, and hypothesis testing were employed. These methods were used to 

determine the magnitude, direction, and significance of atmospheric influences. 

Results reveal that temperature and humidity exhibit strong, statistically 

significant associations with signal strength and call reliability. Pressure and wind 

parameters show moderate but noteworthy effects on congestion and handover 

performance. The developed models demonstrate that tropospheric conditions 

account for a substantial proportion of KPI variability. This indicates that 

atmospheric impairments play a measurable role in network degradation. The 

study provides a data-driven basis for proactive network optimization. It enables 

operators to incorporate atmospheric behaviors into predictive maintenance, link 

budgeting, and adaptive radio-resource management. The findings contribute to 

an improved understanding of environmental impacts on mobile communication 

systems. They also support the design of more resilient networks under dynamic 

tropospheric conditions. 

 

INTRODUCTION 

The rapid growth of mobile communication technology 

has significantly transformed socio-economic activities 

worldwide. Cellular networks play a vital role in enabling 

seamless communication; however, their performance is 

influenced by numerous environmental factors that can 

degrade signal strength and overall Quality of Service 

(QoS). One such critical, yet often underexplored, factor 

is variability in the lower atmosphere (tropospheric 

influence), which affects radio-wave propagation, 

particularly in tropical regions (Sheu, 2021; Adelakun et 

al., 2020; Ugbeh et al., 2024). 

The city of Ogbomoso, located in southwestern Nigeria, 

has experienced a growing demand for reliable cellular 

connectivity. Despite infrastructural improvements by 

service providers, residents and mobile network 

operators continue to experience poor signal quality, 

dropped calls, and inconsistent internet speeds (Ajayi et 

al., 2021; Akpan, 2021). These challenges underscore the 

importance of evaluating the effects of atmospheric 

conditions on cellular signal propagation. In particular, 

tropospheric parameters such as wind speed, atmospheric 

pressure, temperature, and relative humidity have been 
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identified as influential factors (Aremu et al., 2023; 

Ayegba et al., 2025; Atsuwe et al., 2025). 

Network performance can also be assessed using specific 

Key Performance Indicators (KPIs), including Traffic 

Channel Congestion Rate (TCHCR), Call Setup Success 

Rate (CSSR), Handover Success Rate (HOSR), and 

signal strength. These KPIs provide quantifiable insights 

into the reliability, efficiency, and overall performance of 

cellular networks. An integrated evaluation of both 

tropospheric parameters and network KPIs offers a more 

comprehensive understanding of the factors influencing 

signal quality and coverage (Ayegba et al., 2022; Ekah et 

al., 2022a; Ekah et al., 2022b). 

This study investigates the influence of tropospheric 

conditions on cellular network signal strength in 

Ogbomoso, Nigeria, while also evaluating key 

performance metrics across three major network 

providers MTN, GLO, and AIRTEL. By correlating 

meteorological data with signal strength measurements, 

the research seeks to improve understanding of 

atmospheric effects on cellular communication systems. 

Furthermore, the study aims to provide data-driven 

recommendations to support improved network 

forecasting, planning, and management in Ogbomoso 

and comparable urban environments. 

Although Ogbomoso serves as the empirical case study, 

the findings are discussed within the broader context of 

tropical climates. As such, the results contribute to a 

wider understanding of tropospheric effects on cellular 

network reliability in tropical regions. However, the 

conclusions may not be directly applicable to arid, 

temperate, or high-latitude regions without further 

investigation and validation. 

 

Related Works 

The performance of cellular networks is significantly 

influenced by atmospheric conditions, particularly 

tropospheric variables such as rainfall, wind speed, 

relative humidity, and temperature. Numerous studies 

have examined these effects, providing valuable insights 

into the relationships between meteorological factors and 

signal strength. 

In a study conducted in Cross River State, Nigeria, Ekah 

et al. (2022a) investigated the impact of tropospheric 

variables on dropped call rates across four major mobile 

networks: MTN, Airtel, Globacom, and 9mobile. Using 

six years of data (2015–2020), the authors reported that 

wind speed exhibited a strong positive correlation with 

dropped call rates, whereas temperature showed a weak 

negative correlation. Relative humidity and rainfall 

demonstrated varying degrees of association depending 

on the network, underscoring the complex and network-

specific interactions between atmospheric conditions and 

cellular performance. 

Similarly, Imozie et al. (2022) examined the updating 

analysis of key performance indicators of a 4G LTE 

network with the prediction of missing values of critical 

network parameters based on experimental data from a 

dense urban environment. The study analyzed key 

performance indicators (KPIs) using experimental data 

collected from a densely populated urban area and 

addressed the challenge of incomplete datasets by 

predicting missing network parameters, thereby enabling 

a more comprehensive and current assessment of network 

performance. 

Furthermore, Ayegba et al. (2022) investigated the 

statistical relationships between atmospheric parameters, 

noise temperature, and digital television signal strength 

in the Jos metropolis. Their results indicated that signal 

strength was generally higher during early morning and 

late evening periods, while atmospheric temperature and 

noise temperature exhibited significant inverse 

correlations with signal strength. In a subsequent study, 

Ayegba et al. (2025) examined digital terrestrial 

television signals in Abuja and Jos, focusing on the 

influence of atmospheric variables such as wind speed, 

rainfall, temperature, atmospheric pressure, and relative 

humidity. The findings revealed that relative humidity 

had a strong positive correlation with signal strength, 

whereas parameters such as temperature and wind speed 

adversely affected signal reception. 

Collectively, these studies highlight the significant role 

of tropospheric variables in shaping the performance of 

wireless communication systems. Understanding these 

relationships is essential for effective network 

optimization and for developing strategies to mitigate the 

adverse effects of atmospheric variability on signal 

quality, as further explored in the present study. 

 

MATERIALS AND METHODS 

The study was conducted in Ogbomoso, located in 

southwestern Nigeria. The city experiences a tropical 

climate characterized by distinct wet and dry seasons, 

with average temperatures ranging from 20 °C to 38 °C 

and relative humidity levels varying between 45% and 

95% throughout the year. Data were collected over 

twelve consecutive months (January–December 2024), 

encompassing both the rainy and dry seasons in order to 

capture seasonal variability in atmospheric conditions. 

Measurements were obtained from multiple locations, 

including the Ladoke Akintola University of Technology 

(LAUTECH) area, Ojagbo, Arowomole, Ogbomoso 

High School, and Owode Police Station. Additional 

sampling sites included Muslim Comprehensive High 

School and selected locations across Ogbomoso North 

and Ogbomoso South Local Government Areas. All sites 

were strategically selected to ensure adequate spatial 

coverage and representativeness for the study. 

The instruments and data sources used to quantify 

tropospheric effects and network reliability included 

Automated Weather Stations (AWS) installed at Ladoke 

Akintola University of Technology, Ogbomoso, as well 
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as a portable weather station equipped with standardized 

sensors deployed across the city. These instruments 

measured atmospheric temperature, relative humidity, 

wind speed, and atmospheric pressure. Network 

performance data, including Received Signal Strength 

Indicator (RSSI) and Reference Signal Received Power 

(RSRP), were obtained from Base Transceiver Station 

(BTS) logs provided by Airtel, MTN, and GLO Nigeria. 

The BTS data covered the same study period, from 

January to December 2024, and included records related 

to signal quality and call handling performance. 

 The study monitored mobile network Key Performance 

Indicators (KPIs) across the active radio access 

technologies deployed in Ogbomoso, namely GSM 

(900/1800 MHz), UMTS (2100 MHz), and LTE 

(1800/2600 MHz). These frequency bands were selected 

because they represent the bands predominantly utilized 

by Nigerian network operators in the region and exhibit 

differing propagation characteristics under tropospheric 

conditions. The frequency allocations are inferred from 

national operator licensing information and typical 

deployment practices and were not independently 

verified through site-specific measurements. Base 

Transceiver Station (BTS) signal strength logs were 

averaged over 30-minute intervals to align with 

corresponding meteorological observations. The BTS 

logs underwent internal operator validation procedures to 

identify and correct missing or inconsistent entries. 

Network Operations and Maintenance (O&M) systems 

were used to access historical fault, downtime, and 

performance records, while Radio Network Controllers 

(RNCs), or their functional equivalents, were utilized for 

Key Performance Indicator (KPI) aggregation (Ekah et 

al., 2022a; Ekah et al., 2022b). 

Field measurements were conducted using a Samsung 

Galaxy A52s smartphone (Android 13, Qualcomm 

Snapdragon 778G modem) running Network Signal Guru 

v2.1.38. The device’s internal, factory-calibrated 

Multiple-Input Multiple-Output (MIMO) antenna was 

used without modification. The application sampled 

Long Term Evolution (LTE) parameters, including 

Reference Signal Received Power (RSRP), Reference 

Signal Received Quality (RSRQ), and Signal-to-

Interference-plus-Noise Ratio (SINR). Additional 

parameters recorded included Received Signal Strength 

Indicator (RSSI), Channel Quality Indicator (CQI), 

Physical Cell Identity (PCI), E-UTRA Absolute Radio 

Frequency Channel Number (EARFCN), and Radio 

Resource Control (RRC) state (Idle/Connected). 

The application operated within the standard Android 

field-test framework, using user-granted permissions: 

ACCESS_FINE_LOCATION for geo-tagging, 

READ_PHONE_STATE for cell and RRC information, 

and ACCESS_NETWORK_STATE for network-type 

verification. All measurement logs were exported in 

Comma-Separated Values (CSV) format and 

synchronized with meteorological observations (Ekah & 

Emeruwa, 2022; Ewona & Ekah, 2021). 

Network signal strength readings, expressed in decibel-

milliwatts (dBm), were aligned with simultaneous 

tropospheric measurements. Atmospheric parameters 

including temperature (°C), wind speed (m/s), 

atmospheric pressure (hPa), and relative humidity (%) 

were recorded using a portable weather station equipped 

with standardized sensors. Measurements were 

synchronized at fixed intervals (e.g., 30 minutes) and 

subjected to data cleaning procedures to remove missing 

or inconsistent values (Ekah & Emeruwa, 2022; Ewona 

& Ekah, 2021). 

Signal strength data were collected for three major 

cellular network operators in Ogbomoso: MTN, GLO, 

and AIRTEL. Measurements were obtained at the same 

locations and time intervals as the meteorological 

observations to ensure temporal and spatial consistency, 

thereby supporting reliable correlation analysis (Obi et 

al., 2021; Aktaş et al., 2022). 

KPI data were collected at multiple Global Positioning 

System (GPS)-referenced points across Ogbomoso, 

Nigeria, at an approximate height of 1.5 m above ground 

level. Measurements covered both indoor and outdoor 

environments, incorporating Line-of-Sight (LOS) and 

Non-Line-of-Sight (NLOS) conditions. Data collection 

included stationary sampling as well as drive tests along 

major roads to capture mobility-related effects. GPS 

coordinates and timestamps were logged for all samples. 

Network KPI measurements were aggregated into 30-

minute intervals to correspond with weather 

observations. Missing meteorological data points were 

interpolated where feasible, while KPI intervals with 

more than 50% missing samples were excluded to ensure 

robust temporal alignment for correlation analysis (Sheu 

et al., 2024; Suleman et al., 2024). 

The collected data were analyzed to examine 

relationships between atmospheric conditions and mobile 

communication signal strength. Statistical analyses 

included descriptive statistics, correlation analysis, and 

regression modeling to evaluate the influence of tropical 

weather on LTE KPIs. Controls were implemented for 

LOS/NLOS conditions, indoor versus outdoor 

environments, mobility state, and baseline clear-sky 

conditions. Data were sampled spatially across urban, 

suburban, and semi-rural areas and temporally in 30-

minute windows, covering both RRC_IDLE and 

RRC_CONNECTED states. 

Results are reported using standard KPI units and 

correlation coefficients, with missing data addressed 

through interpolation or exclusion as appropriate (Zhang 

et al., 2024; Zakaria, 2024). In addition, KPIs such as 

Traffic Channel Congestion Rate (TCHCR), Call Setup 

Success Rate (CSSR), Handover Success Rate (HOSR), 

and signal strength were evaluated to provide broader 

insights into overall network performance under varying 
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atmospheric conditions. The study therefore focuses on 

established cellular network KPIs to quantify reliability 

and service quality under tropospheric impairments 

(Imozie et al., 2022; Chikha et al., 2024). 

Call Setup Success Rate (CSSR) represents the 

probability of successfully establishing a call whether 

voice or data upon user request. It is a standard network-

level KPI widely used to assess network accessibility and 

operational reliability. 

CSSR(%) =
Number of Successful Call Setups

Total Call Setup Attempts
x100% 

     (1) 

Call Setup Success Rate (CSSR) is expressed as a 

percentage (%) and typically ranges between 90% and 

100% for well-performing LTE and UMTS networks. 

Higher CSSR values indicate better network 

accessibility, whereas values below approximately 95% 

may suggest coverage limitations, network congestion, or 

environmental degradation. When CSSR is adversely 

affected by tropospheric impairments, key radio 

parameters such as Reference Signal Received Power 

(RSRP), Reference Signal Received Quality (RSRQ), 

and Signal-to-Interference-plus-Noise Ratio (SINR) are 

often reduced. As a result, the likelihood of failed call 

initiation increases. 

CSSR quantifies the probability of successful call 

establishment and serves as a direct indicator of user 

experience and network accessibility. Tropical 

tropospheric conditions such as rainfall, high relative 

humidity, and temperature gradients can attenuate radio 

signals, reduce RSRP, and increase call setup failures. 

Monitoring CSSR under varying atmospheric conditions 

enables network engineers to identify coverage 

deficiencies, optimize base station transmit power, and 

schedule preventive maintenance during periods of 

increased vulnerability. 

Traffic Channel Congestion Rate (TCHCR) measures the 

proportion of call attempts that fail due to insufficient 

traffic channel resources. It represents the fraction of 

calls blocked as a result of busy or unavailable traffic 

channels and reflects overall network resource utilization 

and congestion levels. Severe atmospheric attenuation 

can degrade signal quality, leading to retransmissions, 

increased call attempts, and temporary channel overload. 

Monitoring TCHCR during adverse weather conditions 

allows network operators to adjust channel allocation 

strategies, enhance capacity, or reconfigure scheduling 

algorithms to maintain acceptable Quality of Service 

(QoS). 

TCHCR(%) =
Number of TCH Blocking Events

Total Call  Attempts
x100% 

     (2) 

TCHCR is expressed as a percentage (%) and typically 

ranges from 0-10% in well-managed networks. Higher 

TCHCR values indicate network congestion and limited 

radio resource availability. Tropospheric effects that 

temporarily degrade SINR or RSRP can increase call 

drop rates and trigger TCH blocking events. 

Handover Success Rate (HOSR) represents the 

probability of a successful handover between serving and 

target cells during user mobility. It is a key indicator of 

mobility performance and seamless connectivity. 

Atmospheric conditions such as rain, fog, and high 

humidity can reduce SINR and RSRP, potentially leading 

to failed handovers or unnecessary cell reselection. 

Analyzing HOSR under tropospheric variations supports 

effective neighbor cell planning, handover parameter 

optimization, and adaptive mobility management, 

thereby enhancing network reliability in tropical 

environments. 

HOSR(%) =
Number of Successful Handovers

Total Handover Attempts
x100% 

     (3) 

HOSR is expressed as a percentage (%) and typically 

ranges between 90–100% in properly planned 

LTE/UMTS networks. Low HOSR values indicate 

mobility challenges, poor signal quality, or inadequate 

neighbor cell planning. Tropospheric impairments, such 

as rain attenuation and multipath effects, can degrade 

SINR and RSRP, leading to handover failures. 

CSSR, TCHCR, and HOSR serve as practical key 

performance indicators (KPIs) that link tropical 

meteorological conditions to network reliability. By 

analyzing KPI variations under changes in rainfall, 

humidity, and temperature, network operators can make 

informed Operations and Maintenance (O&M) decisions, 

including coverage optimization, resource allocation, and 

handover parameter tuning (Sheu et al., 2021; Sheu et al., 

2025; Newton et al., 2024). 

 

RESULTS AND DISCUSSION 

The study was conducted from January to December 

2024, encompassing both the rainy and dry seasons. 

Corresponding average tropospheric variables, signal 

strength, and key performance indicators (KPIs) were 

recorded in Ogbomoso Metropolis, as summarized in 

Tables 1, 2, and 3. Tropospheric parameters, including 

pressure, humidity, temperature, and wind speed, can 

significantly influence wireless radio propagation. 

To quantify these effects, statistical correlation analysis 

was performed to determine whether each meteorological 

variable exhibits a significant linear relationship with 

cellular network signal strength (typically measured in 

dBm). The most commonly used metric is Pearson’s 

correlation coefficient (r), supported by the t-test for 

significance, which provides p-values indicating whether 

the observed correlations are statistically meaningful 

(Sheu et al., 2021; Sheu et al., 2025). Pearson’s 

correlation coefficient quantifies both the strength and 

direction of a linear relationship between two continuous 

variables, such as signal strength and weather conditions. 

Its values range from –1 to +1 and are computed using 
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the standardized covariance of the variables. The 

coefficient values were calculated using Equation (iv). 

𝑟 =
Σ(𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

√Σ(𝑥𝑖−𝑥)2Σ(𝑦𝑖−𝑦)2
   (4) 

Where𝑥, 𝑦= means of 𝑥 and 𝑦 ,
 

𝑥𝑖 ,𝑦𝑖= paired 

observations 

The t-value for testing the significance of Pearson’s r is 

calculated using equation (v). 

𝑡 = 𝑟√
𝑛−2

1−𝑟2    (5) 

Where r = Pearson’s correlation coefficient, n = sample 

size, Degrees of freedom (𝑑𝑓) = 𝑛 − 2. Multiple 

regression, as adopted in this study, is a statistical method 

used to model the relationship between a single 

dependent variable and two or more independent 

variables. In multiple regression, the sum of squares due 

to regression (SSR) and the total sum of squares (SST) 

are key quantities used to calculate the coefficient of 

determination, 𝑅2.  

Coefficient of Determination = 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
 (6) 

Where SST = Total Sum of Squares and SSR = 

Regression Sum of Squares 

SST = Total Sum of Squares = 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1  

     (7) 

Where 𝑦𝑖= Measures the total variation and 𝑦 = Variation 

of observations around the mean  

SSR = Regression Sum of Squares  

= 𝑆𝑆𝑅 = ∑ (𝑦
∧

𝑖 − 𝑦)
2

𝑛
𝑖=1    (8) 

𝑦
∧

𝑖= Measures the variation explained by the regression 

model and 𝑦 = Variation of observations around the mean 

Adjusted 𝑅2= 𝑅𝑎𝑑𝑗
2 = 1 −

(1−𝑅2)(𝑛−1)

𝑛−𝑘−1
 (9) 

Where n = 24 (sample size) and k = 4 (number of 

predictors) 

Hypothesis testing, as applied in this study, is a statistical 

method used to determine whether there is sufficient 

evidence in a dataset to support a claim (the alternative 

hypothesis) about a population parameter. The null 

hypothesis (H₀) represents no effect, no difference, or no 

linear relationship (r = 0), while the alternative 

hypothesis (H₁) represents the presence of an effect or a 

statistically significant linear relationship (r ≠ 0). The 

significance level (α) defines the threshold for rejecting 

H₀ and is typically set at 0.05 (5%). The p-value indicates 

the probability of observing the data if H₀ is true, 

providing a measure of the statistical significance of the 

results. 

If 𝑝 < 𝛼(𝑖. 𝑒𝑝 < 0.05) → Reject H₀ (statistically 

significant result) 

If 𝑝 ≥ 𝛼(𝑖. 𝑒𝑝 ≥ 0.05) → Fail to reject H₀ (not 

statistically significant) 

Two-tailed p-value formula applied in the study 

according to equation (x) 

𝑝 = 2 × (1 − 𝑇𝑐𝑑𝑓(|𝑡|, 𝑑𝑓))  (10) 

Where 𝑇𝑐𝑑𝑓= cumulative distribution function of the t-

distribution, ∣t∣ = absolute value of the computed t-

statistic. The sample size as revealed in Table (1) is 24, 

Degree of freedom is 23, the confidence level is 95% and 

Confidence interval is  10 ± 1.266. The computed values 

of Pearson’s correlation coefficient (r), t-value, 

coefficient of determination (R2), adjusted coefficient of 

determination (𝑅𝑎𝑑𝑗
2 ) and p-value as contained in 

equations (iv) – (ix) are slotted in Table (3) and Figure 

(1). 

 

Table 1: Statistical Data of GSM Signal Strengths at Varying Tropospheric Variables in Ogbomoso (2024) 

Time 

(hr) 

Signal Strength (dBm) Atmospheric 

Temp. (0C) 

Relative 

Humidity (%) 

Pressure 

(hPa) 

Wind Speed  

(𝒎𝒔−𝟏) MTN  GLO  AIRTEL  

01.00 40.50 60.50 68.00 21.50 80.00 1010.0 6.50 

02.00 42.00 62.00 69.00 21.90 79.00 1012.1 6.50 

03.00 45.50 65.50 70.00 22.00 76.80 1015.0 7.40 

04.00 48.20 68.20 72.20 23.10 81.50 1013.2 5.06 

05.00 50.10 70.10 73.10 23.20 79.00 1011.1 6.55 

06.00 52.50 71.50 78.50 24.30 76.00 1014.0 6.50 

07.00 55.80 73.80 79.80 24.50 76.80 1010.2 7.40 

08.00 58.60 74.60 80.60 26.00 81.50 1014.1 7.41 

09.00 60.00 76.00 81.00 28.20 81.00 1012.0 6.50 

10.00 61.20 76.20 83.20 29.50 79.00 1015.1 5.06 

11.00 62.00 77.00 84.00 30.60 80.00 1011.0 6.50 

12.00 62.20 77.20 86.20 32.90 79.00 1010.1 6.50 

13.00 70.00 80.00 87.00 34.00 76.80 1013.0 7.40 

14.00 75.20 82.20 88.20 36.10 81.50 1015.2 5.06 

15.00 77.20 84.20 89.20 37.25 79.00 1012.1 6.55 

16.00 78.10 85.10 89.10 36.90 76.00 1010.0 6.50 

17.00 79.50 86.50 90.50 30.50 76.80 1011.2 7.40 

18.00 66.10 69.10 78.50 28.50 81.50 1015.1 7.41 

19.00 70.10 73.10 77.10 26.00 81.00 1012.0 6.50 
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20.00 72.10 75.10 77.00 25.80 79.00 1014.1 5.06 

21.00 65.50 69.50 80.50 25.75 79.00 1011.0 6.50 

22.00 62.10 67.10 81.10 25.70 76.80 1010.1 6.50 

23.00 64.10 68.10 85.50 25.60 81.50 1015.0 7.40 

24.00 60.00 65.00 86.50 25.55 79.00 1013.2 5.06 

 

Table 2: Average Summary of Correlation between Tropospheric Conditions, KPIs and Signal Performances 

in Ogbomoso (2024) 

Aver. Atm. Temp. (0C) Aver. Rel. Hum. ( %) Aver. Pressure (hPa) Aver. Wind Speed (𝒎𝒔−𝟏) 

27.72 79.06 1012.0 6.47 

 

Signal Strength (dBm) Signal Quality CSSR (%) TCHCR (%) HOSR (%) 

MTN 

- 61.59 84.26 98.00 2.02 97.96 

GLO 

- 73.23 64.28 96.10 2.45 97.12 

AIRTEL 

    - 77.74 44.48 95.55 3.45 95.83 

 

Table 3: Statistical Correlation Analysis between Tropospheric Conditions and Network Signal Strength in 

Ogbomoso (2024)  

Mobile 

Network 

 Atm. Temperature 

(0C)  

Rel. Humidity  

(%) 

Atm. Pressure 

(hPa) 

Wind Speed  

(𝒎𝒔−𝟏)  

Atmospheric Conditions 27.72 (0C) 79.06 (%) 1012.0 (hPa) 6.47 (𝑚𝑠−1) 

𝑅2 0.776 0.988 0.999 0.995 

Adjusted 𝑅2 0.774 0.986 0.999 0.994 
      

 

MTN 

Signal Strength (dBm) - 61.59 - 61.59 - 61.59 - 61.59 

r -0.965 0.34 0.13 -0.11 

t-value -17.26 1.70 0.62 -0.52 

p-value 0.0001 0.10  0.54  0.61  
      

 

 

GLO 

Signal Strength  

(dBm) 

- 73.23 - 73.23 - 73.23 - 73.23 

r -0.62 0.55 0.22 -0.15 

t-value -3.71 3.09 1.06 -0.71 

p-value 0.001  0.005  0.30  0.48  
      

 

Airtel 

Signal Strength (dBm)     - 77.74 - 77.74 - 77.74 - 77.74 

r -0.70 0.05 -0.02 0.12 

t-value -4.60 0.24 -0.094 0.57 

p-value 0.0001  0.81  0.93  0.57  

      

 
Figure 1: Statistical Representation of t-value against p-value 
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The plot in Figure 1 and Table 3 demonstrate the 

expected statistical pattern: as |t| increases, the p-value 

decreases, whereas as |t| approaches 0, the p-value rises 

sharply. This confirms that the magnitude of the t-value 

is inversely related to the p-value, as predicted by the t-

distribution. Statistical analysis revealed significant 

relationships between atmospheric parameters and 

mobile signal performance. 

Table 3 shows a very strong, statistically significant 

negative correlation between temperature and MTN 

signal strength (r = −0.965, p < 0.0001), indicating that 

as temperature increases, signal strength decreases 

substantially. This suggests that temperature is a critical 

factor affecting network performance, consistent with 

physical expectations that higher temperatures can 

increase atmospheric noise, reduce propagation 

efficiency, or enhance tropospheric attenuation. 

In contrast, the correlation between relative humidity and 

MTN signal strength is weak and not statistically 

significant (r = 0.34, p = 0.10), suggesting a slight 

tendency for signal strength to improve as humidity 

increases. Atmospheric pressure also shows a very weak, 

non-significant correlation with MTN signal strength (r = 

0.13, p = 0.54), indicating minimal linear influence. 

For GLO, Table 3 reveals a strong, statistically 

significant negative correlation between temperature and 

signal strength (r = −0.62, p = 0.001), confirming that 

higher temperatures weaken signal strength. There is a 

moderate, statistically significant negative correlation 

between relative humidity and GLO signal strength (r = 

−0.55, p = 0.005), indicating that increased humidity 

tends to slightly strengthen the signal (less negative). 

Correlations between atmospheric pressure (r = 0.22, p = 

0.30) and wind speed (r = −0.15, p = 0.48) with GLO 

signal strength are weak and not significant, suggesting 

minimal linear effects. This aligns with typical RF 

propagation behavior, where temperature and humidity 

dominate, and wind affects signal strength only indirectly 

(e.g., via rain, dust, or structural movement). 

For Airtel, Table 3 shows a strong, statistically 

significant negative correlation between temperature and 

signal strength (r = −0.70, p = 0.0001), consistent with 

expected RF behavior in which higher temperatures can 

increase noise, refractivity, and attenuation. Relative 

humidity (r = 0.05, p = 0.81), atmospheric pressure (r = 

−0.02, p = 0.93), and wind speed (r = 0.12, p = 0.57) all 

exhibit very weak, non-significant correlations, 

indicating negligible linear effects on signal strength. 

This reinforces that compared with temperature; factors 

like humidity, pressure, or wind alone are not primary 

determinants of signal performance in this dataset. 

Among the tropospheric parameters, the regression 

results indicate that temperature and relative humidity 

jointly account for approximately 62% of the observed 

monthly variation in received signal strength. This 

suggests a moderate influence of meteorological 

parameters. 

The coefficient of determination (𝑅2 = 0.776) indicates 

that 77.6% of the total variation in the atmospheric 

temperature is elucidated by the regression model, while 

the remaining 22.4% is due to factors error. The adjusted 

𝑅𝑎𝑑𝑗
2 = 0.775 in the result indicates an excellent fit even 

when accounting for model complexity of atmospheric 

temperature. Approximately 98.8% of the total variation 

in relative humidity (𝑅2 = 0.988) is expounded by the 

regression model, indicating an excellent model fit, with 

only 1.2% inexplicable variation. The adjusted 𝑅𝑎𝑑𝑗
2 =

0.987 in the result designates an outstanding fit even 

when accounting for model intricacy of relative 

humidity. Almost 99.99% of the total variation in 

atmospheric pressure (𝑅2 = 0.999) is described by the 

regression model, signifying an extremely strong model 

fit, with negligible unsolved variation. With 

adjusted𝑅𝑎𝑑𝑗
2 = 0.994, the regression model explains 

nearly 100% of the variation in relative atmospheric 

pressure, this shows an exceptionally strong fit. About 

99.5% of the total variation in average wind speed (𝑅2 =
0.995) is explicated by the regression model, 

demonstrating an excellent model fit. Only 0.5% of the 

variation is unfathomable. The adjusted 𝑅𝑎𝑑𝑗
2 = 0.994 in 

the result indicates an excellent fit even when accounting 

for model complexity of wind speed. 
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Figure 2: MTN Signal Strength, Quality and KPIs in Ogbomoso (2024) 

 

 
Figure 3: GLO Signal Strength, Quality and KPIs in Ogbomoso (2024) 

 

 
Figure 4: Airtel Signal Strength, Quality and KPIs in Ogbomoso (2024) 
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Figure 5: MTN Signal Strength, Quality and Tropospheric Variations in Ogbomoso (2024) 

 

 
Figure 6: GLO Signal Strength, Quality and Tropospheric Variations in Ogbomoso (2024) 

 

 
Figure 7: Airtel Signal Strength, Quality and Tropospheric Variations in Ogbomoso (2024) 
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The results, presented in Tables 1–3 and Figures 1–7, 

indicate that atmospheric temperature ranged from 

21.50°C to 37.25°C, with higher values observed during 

the dry season. Correspondingly, relative humidity varied 

between 76.80% and 81.50%, peaking during the rainy 

season. Atmospheric pressure remained relatively stable 

around an average of 730.95 Pa, while wind speed 

averaged 6.47 m/s, with intermittent gusts observed 

during transitional weather periods. The RSCP, which 

measures the power received by a receiver on a specific 

physical channel, ranged from –40.50 dBm (strong 

signal) to –90.50 dBm (weak signal). MTN recorded the 

strongest average signal strength at –61.59 dBm, 

followed by GLO at –73.23 dBm, while Airtel exhibited 

the weakest average signal strength at –77.74 dBm. 

The KPI values were calculated using Equations (1)–(3). 

CSSR, which measures the percentage of successful call 

attempts, averaged 98.00% for MTN, 96.10% for GLO, 

and 95.55% for Airtel, with slight declines observed 

during periods of high humidity. TCHCR, representing 

the percentage of time control channels experienced 

congestion due to high traffic load, averaged 2.02% for 

MTN, 2.45% for GLO, and 3.45% for Airtel. HOSR, 

reflecting the percentage of successfully completed 

handovers between cells, averaged 97.96% for MTN, 

97.12% for GLO, and 95.83% for Airtel. Network 

engineers should prioritize factors with stronger 

correlations, such as temperature effects, when 

optimizing signal coverage, particularly in high-humidity 

environments. 

 

CONCLUSION 

This study investigated the influence of tropospheric 

variables on cellular network signal strength and 

evaluated key performance indicators (KPIs) in 

Ogbomoso, Nigeria. The analysis established that 

tropospheric factors significantly affect mobile 

telecommunication signal strength. Among these, wind 

speed, atmospheric temperature, relative humidity, and 

atmospheric pressure were identified as the most critical 

contributors to signal attenuation and degradation, 

resulting in more frequent dropped calls and reduced 

Quality of Service (QoS). 

The findings are consistent with related studies in other 

regions. For example, Ekah et al. (2022a) in Cross River 

State, Nigeria, reported that atmospheric conditions 

influence dropped call rates across different cellular 

networks, with wind speed and relative humidity 

showing considerable impact. Similarly, Ewona and 

Ekah (2021) examined the influence of tropospheric 

variables on mobile network signal strength in Calabar, 

Nigeria, confirming that weather parameters play a 

significant role in signal performance. The study finds 

that temperature and relative humidity mutually 

responsible for almost 62% of the experimental monthly 

variation in received signal strength. This advocates a 

modest effect of atmospheric parameters. While other 

factors like terrain and transmitter power played a more 

substantial role for Glo, Airtel, and 9mobile networks.    

 

RECOMMENDATIONS 

The adverse effects of atmospheric conditions on cellular 

network performance in Ogbomoso and similar locations 

can be mitigated through several strategies. First, 

integrating climatological data into the network design 

process an approach known as Adaptive Network 

Planning can help anticipate and compensate for 

atmospheric impacts, thereby enhancing signal 

consistency during challenging weather conditions. 

Second, to ensure adequate coverage and maintain signal 

strength, additional base stations or repeaters should be 

deployed in areas prone to significant signal attenuation. 

This strategy, referred to as Infrastructure Enhancement, 

is particularly important in regions affected by adverse 

weather. 

Third, continuous monitoring of key performance 

indicators (KPIs) should be implemented to promptly 

identify and resolve signal disruptions, ensuring 

consistent service quality (Regular Performance 

Monitoring). Finally, educating network subscribers 

about the influence of tropospheric conditions on signal 

quality can help set realistic expectations and reduce 

dissatisfaction during periods of severe weather (Public 

Awareness Programs). By adopting these measures, 

network operators can significantly improve service 

quality and signal reliability, even under challenging 

atmospheric conditions. 
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