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Modeling Tropospheric Effects on Mobile Network Performance Using KPI-Based Metrics
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ABSTRACT

Understanding how tropospheric variability influences mobile communication
systems is critical for improving network reliability. This need is especially
important in regions characterized by rapid atmospheric fluctuations. This study
presents a quantitative modeling framework for evaluating tropospheric effects on
mobile network performance using key performance indicators (KPIs).
Tropospheric parameters including temperature, relative humidity, atmospheric
pressure, and wind conditions were synchronized with corresponding network
KPIs. These include Call Setup Success Rate (CSSR), Traffic Channel Congestion
Rate (TCHCR), Handover Success Rate (HOSR), and Received Signal Strength.
Statistical techniques comprising Pearson correlation, multiple regression
modeling, and hypothesis testing were employed. These methods were used to
determine the magnitude, direction, and significance of atmospheric influences.
Results reveal that temperature and humidity exhibit strong, statistically
significant associations with signal strength and call reliability. Pressure and wind
parameters show moderate but noteworthy effects on congestion and handover
performance. The developed models demonstrate that tropospheric conditions
account for a substantial proportion of KPI wvariability. This indicates that
atmospheric impairments play a measurable role in network degradation. The
study provides a data-driven basis for proactive network optimization. It enables
operators to incorporate atmospheric behaviors into predictive maintenance, link
budgeting, and adaptive radio-resource management. The findings contribute to
an improved understanding of environmental impacts on mobile communication
systems. They also support the design of more resilient networks under dynamic
tropospheric conditions.
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INTRODUCTION

The rapid growth of mobile communication technology
has significantly transformed socio-economic activities
worldwide. Cellular networks play a vital role in enabling
seamless communication; however, their performance is
influenced by numerous environmental factors that can
degrade signal strength and overall Quality of Service
(QoS). One such critical, yet often underexplored, factor
is variability in the lower atmosphere (tropospheric
influence), which affects radio-wave propagation,
particularly in tropical regions (Sheu, 2021; Adelakun et
al., 2020; Ugbeh et al., 2024).
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The city of Ogbomoso, located in southwestern Nigeria,
has experienced a growing demand for reliable cellular
connectivity. Despite infrastructural improvements by
service providers, residents and mobile network
operators continue to experience poor signal quality,
dropped calls, and inconsistent internet speeds (Ajayi et
al., 2021; Akpan, 2021). These challenges underscore the
importance of evaluating the effects of atmospheric
conditions on cellular signal propagation. In particular,
tropospheric parameters such as wind speed, atmospheric
pressure, temperature, and relative humidity have been
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identified as influential factors (Aremu et al., 2023;
Ayegba et al., 2025; Atsuwe et al., 2025).

Network performance can also be assessed using specific
Key Performance Indicators (KPIs), including Traffic
Channel Congestion Rate (TCHCR), Call Setup Success
Rate (CSSR), Handover Success Rate (HOSR), and
signal strength. These KPIs provide quantifiable insights
into the reliability, efficiency, and overall performance of
cellular networks. An integrated evaluation of both
tropospheric parameters and network KPIs offers a more
comprehensive understanding of the factors influencing
signal quality and coverage (Ayegba et al., 2022; Ekah et
al., 2022a; Ekah et al., 2022b).

This study investigates the influence of tropospheric
conditions on cellular network signal strength in
Ogbomoso, Nigeria, while also evaluating key
performance metrics across three major network
providers MTN, GLO, and AIRTEL. By correlating
meteorological data with signal strength measurements,
the research seeks to improve understanding of
atmospheric effects on cellular communication systems.
Furthermore, the study aims to provide data-driven
recommendations to support improved network
forecasting, planning, and management in Ogbomoso
and comparable urban environments.

Although Ogbomoso serves as the empirical case study,
the findings are discussed within the broader context of
tropical climates. As such, the results contribute to a
wider understanding of tropospheric effects on cellular
network reliability in tropical regions. However, the
conclusions may not be directly applicable to arid,
temperate, or high-latitude regions without further
investigation and validation.

Related Works

The performance of cellular networks is significantly
influenced by atmospheric conditions, particularly
tropospheric variables such as rainfall, wind speed,
relative humidity, and temperature. Numerous studies
have examined these effects, providing valuable insights
into the relationships between meteorological factors and
signal strength.

In a study conducted in Cross River State, Nigeria, Ekah
et al. (2022a) investigated the impact of tropospheric
variables on dropped call rates across four major mobile
networks: MTN, Airtel, Globacom, and 9mobile. Using
six years of data (2015-2020), the authors reported that
wind speed exhibited a strong positive correlation with
dropped call rates, whereas temperature showed a weak
negative correlation. Relative humidity and rainfall
demonstrated varying degrees of association depending
on the network, underscoring the complex and network-
specific interactions between atmospheric conditions and
cellular performance.

Similarly, Imozie et al. (2022) examined the updating
analysis of key performance indicators of a 4G LTE
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network with the prediction of missing values of critical
network parameters based on experimental data from a
dense urban environment. The study analyzed key
performance indicators (KPIs) using experimental data
collected from a densely populated urban area and
addressed the challenge of incomplete datasets by
predicting missing network parameters, thereby enabling
amore comprehensive and current assessment of network
performance.

Furthermore, Ayegba et al. (2022) investigated the
statistical relationships between atmospheric parameters,
noise temperature, and digital television signal strength
in the Jos metropolis. Their results indicated that signal
strength was generally higher during early morning and
late evening periods, while atmospheric temperature and
noise temperature exhibited significant inverse
correlations with signal strength. In a subsequent study,
Ayegba et al. (2025) examined digital terrestrial
television signals in Abuja and Jos, focusing on the
influence of atmospheric variables such as wind speed,
rainfall, temperature, atmospheric pressure, and relative
humidity. The findings revealed that relative humidity
had a strong positive correlation with signal strength,
whereas parameters such as temperature and wind speed
adversely affected signal reception.

Collectively, these studies highlight the significant role
of tropospheric variables in shaping the performance of
wireless communication systems. Understanding these
relationships is essential for effective network
optimization and for developing strategies to mitigate the
adverse effects of atmospheric variability on signal
quality, as further explored in the present study.

MATERIALS AND METHODS

The study was conducted in Ogbomoso, located in
southwestern Nigeria. The city experiences a tropical
climate characterized by distinct wet and dry seasons,
with average temperatures ranging from 20 °C to 38 °C
and relative humidity levels varying between 45% and
95% throughout the year. Data were collected over
twelve consecutive months (January—December 2024),
encompassing both the rainy and dry seasons in order to
capture seasonal variability in atmospheric conditions.
Measurements were obtained from multiple locations,
including the Ladoke Akintola University of Technology
(LAUTECH) area, Ojagbo, Arowomole, Ogbomoso
High School, and Owode Police Station. Additional
sampling sites included Muslim Comprehensive High
School and selected locations across Ogbomoso North
and Ogbomoso South Local Government Areas. All sites
were strategically selected to ensure adequate spatial
coverage and representativeness for the study.

The instruments and data sources used to quantify
tropospheric effects and network reliability included
Automated Weather Stations (AWYS) installed at Ladoke
Akintola University of Technology, Ogbomoso, as well
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as a portable weather station equipped with standardized
sensors deployed across the city. These instruments
measured atmospheric temperature, relative humidity,
wind speed, and atmospheric pressure. Network
performance data, including Received Signal Strength
Indicator (RSSI) and Reference Signal Received Power
(RSRP), were obtained from Base Transceiver Station
(BTS) logs provided by Airtel, MTN, and GLO Nigeria.
The BTS data covered the same study period, from
January to December 2024, and included records related
to signal quality and call handling performance.

The study monitored mobile network Key Performance
Indicators (KPIs) across the active radio access
technologies deployed in Ogbomoso, namely GSM
(900/1800 MHz), UMTS (2100 MHz), and LTE
(1800/2600 MHz). These frequency bands were selected
because they represent the bands predominantly utilized
by Nigerian network operators in the region and exhibit
differing propagation characteristics under tropospheric
conditions. The frequency allocations are inferred from
national operator licensing information and typical
deployment practices and were not independently
verified through site-specific measurements. Base
Transceiver Station (BTS) signal strength logs were
averaged over 30-minute intervals to align with
corresponding meteorological observations. The BTS
logs underwent internal operator validation procedures to
identify and correct missing or inconsistent entries.
Network Operations and Maintenance (O&M) systems
were used to access historical fault, downtime, and
performance records, while Radio Network Controllers
(RNCs), or their functional equivalents, were utilized for
Key Performance Indicator (KPI) aggregation (Ekah et
al., 2022a; Ekah et al., 2022b).

Field measurements were conducted using a Samsung
Galaxy AS52s smartphone (Android 13, Qualcomm
Snapdragon 778G modem) running Network Signal Guru
v2.1.38. The device’s internal, factory-calibrated
Multiple-Input Multiple-Output (MIMO) antenna was
used without modification. The application sampled
Long Term Evolution (LTE) parameters, including
Reference Signal Received Power (RSRP), Reference
Signal Received Quality (RSRQ), and Signal-to-
Interference-plus-Noise Ratio  (SINR). Additional
parameters recorded included Received Signal Strength
Indicator (RSSI), Channel Quality Indicator (CQI),
Physical Cell Identity (PCI), E-UTRA Absolute Radio
Frequency Channel Number (EARFCN), and Radio
Resource Control (RRC) state (Idle/Connected).

The application operated within the standard Android
field-test framework, using user-granted permissions:
ACCESS_FINE LOCATION for geo-tagging,
READ PHONE STATE for cell and RRC information,
and ACCESS NETWORK STATE for network-type
verification. All measurement logs were exported in
Comma-Separated  Values (CSV) format and
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synchronized with meteorological observations (Ekah &
Emeruwa, 2022; Ewona & Ekah, 2021).

Network signal strength readings, expressed in decibel-
milliwatts (dBm), were aligned with simultaneous
tropospheric measurements. Atmospheric parameters
including temperature (°C), wind speed (m/s),
atmospheric pressure (hPa), and relative humidity (%)
were recorded using a portable weather station equipped
with standardized sensors. Measurements were
synchronized at fixed intervals (e.g., 30 minutes) and
subjected to data cleaning procedures to remove missing
or inconsistent values (Ekah & Emeruwa, 2022; Ewona
& Ekah, 2021).

Signal strength data were collected for three major
cellular network operators in Ogbomoso: MTN, GLO,
and AIRTEL. Measurements were obtained at the same
locations and time intervals as the meteorological
observations to ensure temporal and spatial consistency,
thereby supporting reliable correlation analysis (Obi et
al., 2021; Aktas et al., 2022).

KPI data were collected at multiple Global Positioning
System (GPS)-referenced points across Ogbomoso,
Nigeria, at an approximate height of 1.5 m above ground
level. Measurements covered both indoor and outdoor
environments, incorporating Line-of-Sight (LOS) and
Non-Line-of-Sight (NLOS) conditions. Data collection
included stationary sampling as well as drive tests along
major roads to capture mobility-related effects. GPS
coordinates and timestamps were logged for all samples.
Network KPI measurements were aggregated into 30-
minute intervals to correspond with weather
observations. Missing meteorological data points were
interpolated where feasible, while KPI intervals with
more than 50% missing samples were excluded to ensure
robust temporal alignment for correlation analysis (Sheu
et al., 2024; Suleman et al., 2024).

The collected data were analyzed to examine
relationships between atmospheric conditions and mobile
communication signal strength. Statistical analyses
included descriptive statistics, correlation analysis, and
regression modeling to evaluate the influence of tropical
weather on LTE KPIs. Controls were implemented for
LOS/NLOS conditions, indoor versus outdoor
environments, mobility state, and baseline clear-sky
conditions. Data were sampled spatially across urban,
suburban, and semi-rural areas and temporally in 30-
minute windows, covering both RRC IDLE and
RRC_CONNECTED states.

Results are reported using standard KPI units and
correlation coefficients, with missing data addressed
through interpolation or exclusion as appropriate (Zhang
et al., 2024; Zakaria, 2024). In addition, KPIs such as
Traffic Channel Congestion Rate (TCHCR), Call Setup
Success Rate (CSSR), Handover Success Rate (HOSR),
and signal strength were evaluated to provide broader
insights into overall network performance under varying
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atmospheric conditions. The study therefore focuses on
established cellular network KPIs to quantify reliability
and service quality under tropospheric impairments
(Imozie et al., 2022; Chikha et al., 2024).

Call Setup Success Rate (CSSR) represents the
probability of successfully establishing a call whether
voice or data upon user request. It is a standard network-
level KPI widely used to assess network accessibility and

operational reliability.
Number of Successful Call Setups
CSSR(%) = b

Total Call Setup Attempts

x100%

(1
Call Setup Success Rate (CSSR) is expressed as a
percentage (%) and typically ranges between 90% and
100% for well-performing LTE and UMTS networks.
Higher CSSR values indicate better network
accessibility, whereas values below approximately 95%
may suggest coverage limitations, network congestion, or
environmental degradation. When CSSR is adversely
affected by tropospheric impairments, key radio
parameters such as Reference Signal Received Power
(RSRP), Reference Signal Received Quality (RSRQ),
and Signal-to-Interference-plus-Noise Ratio (SINR) are
often reduced. As a result, the likelihood of failed call
initiation increases.
CSSR quantifies the probability of successful call
establishment and serves as a direct indicator of user
experience and network accessibility. Tropical
tropospheric conditions such as rainfall, high relative
humidity, and temperature gradients can attenuate radio
signals, reduce RSRP, and increase call setup failures.
Monitoring CSSR under varying atmospheric conditions
enables network engineers to identify coverage
deficiencies, optimize base station transmit power, and
schedule preventive maintenance during periods of
increased vulnerability.
Traffic Channel Congestion Rate (TCHCR) measures the
proportion of call attempts that fail due to insufficient
traffic channel resources. It represents the fraction of
calls blocked as a result of busy or unavailable traffic
channels and reflects overall network resource utilization
and congestion levels. Severe atmospheric attenuation
can degrade signal quality, leading to retransmissions,
increased call attempts, and temporary channel overload.
Monitoring TCHCR during adverse weather conditions
allows network operators to adjust channel allocation
strategies, enhance capacity, or reconfigure scheduling
algorithms to maintain acceptable Quality of Service
(QoS).
TCHCR(%) =

Number of TCH Blocking Events
Total Call Attempts

x100%

)
TCHCR is expressed as a percentage (%) and typically
ranges from 0-10% in well-managed networks. Higher
TCHCR values indicate network congestion and limited
radio resource availability. Tropospheric effects that
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temporarily degrade SINR or RSRP can increase call
drop rates and trigger TCH blocking events.

Handover Success Rate (HOSR) represents the
probability of a successful handover between serving and
target cells during user mobility. It is a key indicator of
mobility performance and seamless connectivity.
Atmospheric conditions such as rain, fog, and high
humidity can reduce SINR and RSRP, potentially leading
to failed handovers or unnecessary cell reselection.
Analyzing HOSR under tropospheric variations supports
effective neighbor cell planning, handover parameter
optimization, and adaptive mobility management,
thereby enhancing network reliability in tropical

environments.

HOSR(%) — Number of Successful Handovers x100%

3)

HOSR is expressed as a percentage (%) and typically
ranges between 90-100% in properly planned
LTE/UMTS networks. Low HOSR values indicate
mobility challenges, poor signal quality, or inadequate
neighbor cell planning. Tropospheric impairments, such
as rain attenuation and multipath effects, can degrade
SINR and RSRP, leading to handover failures.

CSSR, TCHCR, and HOSR serve as practical key
performance indicators (KPIs) that link tropical
meteorological conditions to network reliability. By
analyzing KPI variations under changes in rainfall,
humidity, and temperature, network operators can make
informed Operations and Maintenance (O&M) decisions,
including coverage optimization, resource allocation, and
handover parameter tuning (Sheu et al., 2021; Sheu et al.,
2025; Newton et al., 2024).

Total Handover Attempts

RESULTS AND DISCUSSION

The study was conducted from January to December
2024, encompassing both the rainy and dry seasons.
Corresponding average tropospheric variables, signal
strength, and key performance indicators (KPIs) were
recorded in Ogbomoso Metropolis, as summarized in
Tables 1, 2, and 3. Tropospheric parameters, including
pressure, humidity, temperature, and wind speed, can
significantly influence wireless radio propagation.

To quantify these effects, statistical correlation analysis
was performed to determine whether each meteorological
variable exhibits a significant linear relationship with
cellular network signal strength (typically measured in
dBm). The most commonly used metric is Pearson’s
correlation coefficient (r), supported by the t-test for
significance, which provides p-values indicating whether
the observed correlations are statistically meaningful
(Sheu et al.,, 2021; Sheu et al.,, 2025). Pearson’s
correlation coefficient quantifies both the strength and
direction of a linear relationship between two continuous
variables, such as signal strength and weather conditions.
Its values range from —1 to +1 and are computed using
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the standardized covariance of the variables. The
coefficient values were calculated using Equation (iv).
_ DY)

"= o7 @
Wherex, y= means of x and y , x; ,y;= paired
observations
The t-value for testing the significance of Pearson’s r is
calculated using equation (v).

n-2

1-r2 ®)
Where r = Pearson’s correlation coefficient, n = sample
size, Degrees of freedom (df) =mn—2. Multiple
regression, as adopted in this study, is a statistical method
used to model the relationship between a single
dependent variable and two or more independent
variables. In multiple regression, the sum of squares due
to regression (SSR) and the total sum of squares (SST)
are key quantities used to calculate the coefficient of
determination, R?.

t=r

Coefficient of Determination = R? = >k (6)
SST

Where SST = Total Sum of Squares and SSR =
Regression Sum of Squares
SST = Total Sum of Squares = SST = Y™, (y; — ¥)?

(7)
Where y;= Measures the total variation and y = Variation
of observations around the mean
SSR = Regression Sum of Squares

A _ 2
=SSR =31, (.- 3) (8)
;11: Measures the variation explained by the regression
model and y = Variation of observations around the mean

_p2 —
Adjusted R*=R%,; = 1 — (1:——12(—1111) ©)
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Where n = 24 (sample size) and k = 4 (number of
predictors)

Hypothesis testing, as applied in this study, is a statistical
method used to determine whether there is sufficient
evidence in a dataset to support a claim (the alternative
hypothesis) about a population parameter. The null
hypothesis (Ho) represents no effect, no difference, or no
linear relationship (r = 0), while the alternative
hypothesis (H:) represents the presence of an effect or a
statistically significant linear relationship (r # 0). The
significance level (o) defines the threshold for rejecting
Ho and is typically set at 0.05 (5%). The p-value indicates
the probability of observing the data if Ho is true,
providing a measure of the statistical significance of the
results.

If p<a(i.ep <0.05)
significant result)

Ifp = a(i.ep = 0.05)
statistically significant)
Two-tailed p-value formula applied in the
according to equation (x)

p=2x(1-Te(It],df)) (10)

Where Tcqr= cumulative distribution function of the t-
distribution, [t| = absolute value of the computed t-
statistic. The sample size as revealed in Table (1) is 24,
Degree of freedom is 23, the confidence level is 95% and
Confidence interval is 10 + 1.266. The computed values
of Pearson’s correlation coefficient (r), t-value,
coefficient of determination (R?), adjusted coefficient of
determination (RZ, ;) and p-value as contained in
equations (iv) — (ix) are slotted in Table (3) and Figure

).

— Reject Ho (statistically
— Fail to reject Ho (not

study

Table 1: Statistical Data of GSM Signal Strengths at Varying Tropospheric Variables in Oghomoso (2024)

Time Signal Strength (dBm) Atmospheric  Relative Pressure Wind Speed
(hr) MTN GLO AIRTEL Temp. (°C) Humidity (%) (hPa) (ms™1)
01.00  40.50 60.50 68.00 21.50 80.00 1010.0 6.50
02.00  42.00 62.00 69.00 21.90 79.00 1012.1 6.50
03.00  45.50 65.50 70.00 22.00 76.80 1015.0 7.40
04.00  48.20 68.20 72.20 23.10 81.50 1013.2 5.06
05.00  50.10 70.10 73.10 23.20 79.00 1011.1 6.55
06.00  52.50 71.50 78.50 24.30 76.00 1014.0 6.50
07.00  55.80 73.80 79.80 24.50 76.80 1010.2 7.40
08.00  58.60 74.60 80.60 26.00 81.50 1014.1 7.41
09.00  60.00 76.00 81.00 28.20 81.00 1012.0 6.50
10.00  61.20 76.20 83.20 29.50 79.00 1015.1 5.06
11.00  62.00 77.00 84.00 30.60 80.00 1011.0 6.50
12.00  62.20 77.20 86.20 32.90 79.00 1010.1 6.50
13.00  70.00 80.00 87.00 34.00 76.80 1013.0 7.40
14.00  75.20 82.20 88.20 36.10 81.50 1015.2 5.06
15.00 77.20 84.20 89.20 37.25 79.00 1012.1 6.55
16.00  78.10 85.10 89.10 36.90 76.00 1010.0 6.50
17.00  79.50 86.50 90.50 30.50 76.80 1011.2 7.40
18.00  66.10 69.10 78.50 28.50 81.50 1015.1 7.41
19.00  70.10 73.10 77.10 26.00 81.00 1012.0 6.50
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20.00  72.10 75.10 77.00 25.80 79.00 1014.1 5.06
21.00  65.50 69.50 80.50 25.75 79.00 1011.0 6.50
22.00  62.10 67.10 81.10 25.70 76.80 1010.1 6.50
23.00 64.10 68.10 85.50 25.60 81.50 1015.0 7.40
24.00  60.00 65.00 86.50 25.55 79.00 1013.2 5.06
Table 2: Average Summary of Correlation between Tropospheric Conditions, KPIs and Signal Performances
in Ogbomoso (2024)
Aver. Atm. Temp. (°C)  Aver. Rel. Hum. ( %) Aver. Pressure (hPa)  Aver. Wind Speed (ms™1)
27.72 79.06 1012.0 6.47
Signal Strength (dBm) Signal Quality CSSR (%) TCHCR (%) HOSR (%)
MTN
-61.59 84.26 98.00 2.02 97.96
GLO
-73.23 64.28 96.10 2.45 97.12
AIRTEL
-77.74 44.48 95.55 3.45 95.83
Table 3: Statistical Correlation Analysis between Tropospheric Conditions and Network Signal Strength in
Ogbomoso (2024)
Atm. Temperature Rel. Humidity Atm. Pressure Wind Speed
‘O (%) (hPa) (ms™)
Atmospheric Conditions  27.72 (°C) 79.06 (%) 1012.0 (hPa) 6.47 (ms™1)
Mobile R? 0.776 0.988 0.999 0.995
Network  Adjusted R? 0.774 0.986 0.999 0.994
Signal Strength (dBm) -61.59 -61.59 -61.59 -61.59
MTN r -0.965 0.34 0.13 -0.11
t-value -17.26 1.70 0.62 -0.52
p-value 0.0001 0.10 0.54 0.61
Signal Strength -73.23 -73.23 -73.23 -73.23
(dBm)
GLO r -0.62 0.55 0.22 -0.15
t-value -3.71 3.09 1.06 -0.71
p-value 0.001 0.005 0.30 0.48
Signal Strength (dBm) -77.74 -77.74 -77.74 -77.74
Airtel r -0.70 0.05 -0.02 0.12
t-value -4.60 0.24 -0.094 0.57
p-value 0.0001 0.81 0.93 0.57
5 -
0
g5
=
?_1 0 - e==t-values
= e===p-values
-15 -
-20 -
p-values

Figure 1: Statistical Representation of t-value against p-value
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The plot in Figure 1 and Table 3 demonstrate the
expected statistical pattern: as [t| increases, the p-value
decreases, whereas as [t| approaches 0, the p-value rises
sharply. This confirms that the magnitude of the t-value
is inversely related to the p-value, as predicted by the t-
distribution. Statistical analysis revealed significant
relationships between atmospheric parameters and
mobile signal performance.

Table 3 shows a very strong, statistically significant
negative correlation between temperature and MTN
signal strength (r = —0.965, p < 0.0001), indicating that
as temperature increases, signal strength decreases
substantially. This suggests that temperature is a critical
factor affecting network performance, consistent with
physical expectations that higher temperatures can
increase  atmospheric noise, reduce propagation
efficiency, or enhance tropospheric attenuation.

In contrast, the correlation between relative humidity and
MTN signal strength is weak and not statistically
significant (r = 0.34, p = 0.10), suggesting a slight
tendency for signal strength to improve as humidity
increases. Atmospheric pressure also shows a very weak,
non-significant correlation with MTN signal strength (r =
0.13, p = 0.54), indicating minimal linear influence.

For GLO, Table 3 reveals a strong, statistically
significant negative correlation between temperature and
signal strength (r = —0.62, p = 0.001), confirming that
higher temperatures weaken signal strength. There is a
moderate, statistically significant negative correlation
between relative humidity and GLO signal strength (r =
—0.55, p = 0.005), indicating that increased humidity
tends to slightly strengthen the signal (less negative).
Correlations between atmospheric pressure (r =0.22, p =
0.30) and wind speed (r = —0.15, p = 0.48) with GLO
signal strength are weak and not significant, suggesting
minimal linear effects. This aligns with typical RF
propagation behavior, where temperature and humidity
dominate, and wind affects signal strength only indirectly
(e.g., via rain, dust, or structural movement).

For Airtel, Table 3 shows a strong, statistically
significant negative correlation between temperature and
signal strength (r = —0.70, p = 0.0001), consistent with

Sheu et al.,

NJP VOLUME 35(1)

NJP

expected RF behavior in which higher temperatures can
increase noise, refractivity, and attenuation. Relative
humidity (r = 0.05, p = 0.81), atmospheric pressure (r =
—0.02, p = 0.93), and wind speed (r = 0.12, p = 0.57) all
exhibit very weak, non-significant correlations,
indicating negligible linear effects on signal strength.
This reinforces that compared with temperature; factors
like humidity, pressure, or wind alone are not primary
determinants of signal performance in this dataset.
Among the tropospheric parameters, the regression
results indicate that temperature and relative humidity
jointly account for approximately 62% of the observed
monthly variation in received signal strength. This
suggests a moderate influence of meteorological
parameters.

The coefficient of determination (R? = 0.776) indicates
that 77.6% of the total variation in the atmospheric
temperature is elucidated by the regression model, while
the remaining 22.4% is due to factors error. The adjusted
R%, ; = 0.775 in the result indicates an excellent fit even
when accounting for model complexity of atmospheric
temperature. Approximately 98.8% of the total variation
in relative humidity (R? = 0.988) is expounded by the
regression model, indicating an excellent model fit, with
only 1.2% inexplicable variation. The adjusted RZ, i =
0.987 in the result designates an outstanding fit even
when accounting for model intricacy of relative
humidity. Almost 99.99% of the total variation in
atmospheric pressure (R? = 0.999) is described by the
regression model, signifying an extremely strong model
fit, with negligible unsolved variation. With
adjustedRﬁdj = 0.994, the regression model explains
nearly 100% of the variation in relative atmospheric
pressure, this shows an exceptionally strong fit. About
99.5% of the total variation in average wind speed (R? =
0.995) is explicated by the regression model,
demonstrating an excellent model fit. Only 0.5% of the
variation is unfathomable. The adjusted RZ;; = 0.994 in
the result indicates an excellent fit even when accounting
for model complexity of wind speed.
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Figure 2: MTN Signal Strength, Quality and KPIs in Ogbomoso (2024)
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Figure 3: GLO Signal Strength, Quality and KPIs in Ogbomoso (2024)
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Figure 4: Airtel Signal Strength, Quality and KPIs in Ogbomoso (2024)
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MTN Signal Strength, Quality and Tropospheric Variations in Ogbomoso (2024)
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Figure 6: GLO Signal Strength, Quality and Tropospheric Variations in Ogbomoso (2024)
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Figure 7: Airtel Signal Strength, Quality and Tropospheric Variations in Ogbomoso (2024)
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The results, presented in Tables 1-3 and Figures 1-7,
indicate that atmospheric temperature ranged from
21.50°C to 37.25°C, with higher values observed during
the dry season. Correspondingly, relative humidity varied
between 76.80% and 81.50%, peaking during the rainy
season. Atmospheric pressure remained relatively stable
around an average of 730.95 Pa, while wind speed
averaged 6.47 m/s, with intermittent gusts observed
during transitional weather periods. The RSCP, which
measures the power received by a receiver on a specific
physical channel, ranged from —40.50dBm (strong
signal) to —90.50 dBm (weak signal). MTN recorded the
strongest average signal strength at —61.59 dBm,
followed by GLO at —73.23 dBm, while Airtel exhibited
the weakest average signal strength at —77.74 dBm.

The KPI values were calculated using Equations (1)—(3).
CSSR, which measures the percentage of successful call
attempts, averaged 98.00% for MTN, 96.10% for GLO,
and 95.55% for Airtel, with slight declines observed
during periods of high humidity. TCHCR, representing
the percentage of time control channels experienced
congestion due to high traffic load, averaged 2.02% for
MTN, 2.45% for GLO, and 3.45% for Airtel. HOSR,
reflecting the percentage of successfully completed
handovers between cells, averaged 97.96% for MTN,
97.12% for GLO, and 95.83% for Airtel. Network
engineers should prioritize factors with stronger
correlations, such as temperature effects, when
optimizing signal coverage, particularly in high-humidity
environments.

CONCLUSION

This study investigated the influence of tropospheric
variables on cellular network signal strength and
evaluated key performance indicators (KPIs) in
Ogbomoso, Nigeria. The analysis established that
tropospheric  factors significantly affect mobile
telecommunication signal strength. Among these, wind
speed, atmospheric temperature, relative humidity, and
atmospheric pressure were identified as the most critical
contributors to signal attenuation and degradation,
resulting in more frequent dropped calls and reduced
Quality of Service (QoS).

The findings are consistent with related studies in other
regions. For example, Ekah et al. (2022a) in Cross River
State, Nigeria, reported that atmospheric conditions
influence dropped call rates across different cellular
networks, with wind speed and relative humidity
showing considerable impact. Similarly, Ewona and
Ekah (2021) examined the influence of tropospheric
variables on mobile network signal strength in Calabar,
Nigeria, confirming that weather parameters play a
significant role in signal performance. The study finds
that temperature and relative humidity mutually
responsible for almost 62% of the experimental monthly
variation in received signal strength. This advocates a
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modest effect of atmospheric parameters. While other
factors like terrain and transmitter power played a more
substantial role for Glo, Airtel, and 9mobile networks.

RECOMMENDATIONS

The adverse effects of atmospheric conditions on cellular
network performance in Ogbomoso and similar locations
can be mitigated through several strategies. First,
integrating climatological data into the network design
process an approach known as Adaptive Network
Planning can help anticipate and compensate for
atmospheric  impacts, thereby enhancing signal
consistency during challenging weather conditions.
Second, to ensure adequate coverage and maintain signal
strength, additional base stations or repeaters should be
deployed in areas prone to significant signal attenuation.
This strategy, referred to as Infrastructure Enhancement,
is particularly important in regions affected by adverse
weather.

Third, continuous monitoring of key performance
indicators (KPIs) should be implemented to promptly
identify and resolve signal disruptions, ensuring
consistent service quality (Regular Performance
Monitoring). Finally, educating network subscribers
about the influence of tropospheric conditions on signal
quality can help set realistic expectations and reduce
dissatisfaction during periods of severe weather (Public
Awareness Programs). By adopting these measures,
network operators can significantly improve service
quality and signal reliability, even under challenging
atmospheric conditions.
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