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ABSTRACT 

In this study, the modified Kratzer energy-dependent screened Coulomb potential 

is analyzed in the presence of external magnetic and Aharonov–Bohm (AB) flux 

fields. The Schrödinger equation is solved using the Nikiforov–Uvarov Functional 

Analysis (NUFA) method, yielding closed-form expressions for the energy 

eigenvalues and the corresponding wavefunctions. These solutions are applied to 

investigate the magnetic properties of the titanium hydride (TiH) diatomic 

molecule, including the partition function, magnetization, magnetic susceptibility, 

and persistent current. The effects of the slope parameter are examined in detail 

and found to play a significant role in controlling the magnitude, ordering, and 

convergence behavior of all magnetic observables. Negative slope values enhance 

the magnetic and thermodynamic responses of the system, while positive slope 

values suppress them, with the zero-slope case acting as an intermediate regime. 

The magnetic field induces divergence and saturation effects, whereas the AB-

flux field governs sharp transitions, minima, and convergence characteristics. 

Overall, the results demonstrate that both the slope parameter and external fields 

provide effective mechanisms for tuning the magnetic behavior of the TiH 

diatomic molecule. 

 

INTRODUCTION 

In fact, the study of diatomic molecules (DMs) is a crucial 

aspect of quantum chemistry and atomic physics. Several 

authors have recently examined the solution of relativistic 

and nonrelativistic wave equations to understand the 

behaviours of numerous DMs in various molecular 

potentials (Abu-Shady, Abdel-Karim & Khokha, 2021).  

The analytical solution of the radial Schrodinger Equation 

(SE) is of high importance in nonrelativistic quantum 

mechanics, since the wave function contains all the 

necessary information to describe a quantum system 

fully.  

Recent studies have incorporated the thermodynamic 

properties of these systems to better understand their 

behavior. For instance (Gumber, Kumar, Gambhir, 

Mohan & Kumar, 2015) investigated the properties of a 

two-dimensional cylindrical quantum dot in the presence 

of both electric and magnetic fields, calculating the 

canonical partition function along with other statistical 

mechanical properties. The partition function, a key 

quantity in statistical mechanics, is used to evaluate 

thermal properties, with its temperature dependence 

allowing for the computation of thermodynamic variables 

such as heat capacity, entropy, and free energy. The 

concept of the partition function, introduced by 

Boltzmann in the 1870s (Ebeling & Sokolov, 2005), plays 

a central role in these analyses. Eshghi, Mehraban & 

Ikhdair (2017) also obtained energy eigenvalues and 

examined the thermal properties of a position-dependent 

mass charged particle influenced by external magnetic 

fields. Oyewumi et al. (2014) studied the radial 

Schrödinger equation with a Deng–Fan potential model, 

calculating the system's thermodynamic properties and 

analyzing how the partition function, heat capacity, 

entropy, mean energy, and free energy varied with 

temperature. Using the Pseudoharmonic potential in the 

presence of both magnetic and AB fields, Ikot et al. 

(2020) investigated thermodynamic properties within the 

framework of superstatistics. Song, Wang & Jia (2017) 

computed the thermodynamic properties of a sodium 

dimer under the improved Rosen–Morse potential, 

finding good agreement with experimental results. Dong 
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and Cruz-Irisson (2012) analyzed the thermodynamic 

properties of the modified Rosen-Morse potential using 

an appropriate quantization rule. Onate & Onyeaju (2016) 

calculated the thermodynamic properties of the Frost-

Musulin potential via partition function, while Ikot et al. 

(2019) studied the exact and Poisson summation 

thermodynamic properties for diatomic molecules with 

Tietz potential. Further, Ikot et al. (2020) explored the 

screened Kratzer potential in the presence of both 

magnetic and AB flux fields in two-dimensional space, 

using the factorization method and investigating a range 

of thermodynamic properties. Ikot et al. (2019) 

demonstrated that by solving the Schrödinger equation 

for the screened Kratzer potential, one can derive the 

vibrational partition function and subsequently compute 

various thermodynamic properties of diatomic systems.  

Extending these approaches to systems under external 

influences, Edet et al. (2021) showed that the inclusion of 

magnetic and Aharonov–Bohm fields in a Yukawa 

potential framework results in discernible shifts in energy 

eigenvalues that directly affect persistent currents, 

magnetic susceptibility, and related thermal properties. 

Nevertheless, despite the extensive body of existing 

research, our review reveals that the magnetic properties 

of the titanium hydride (TiH) diatomic molecule, modeled 

using the modified Kratzer energy-dependent screened 

Coulomb potential, have not yet been investigated in the 

presence of external magnetic and Aharonov–Bohm (AB) 

flux fields. Addressing this gap constitutes the primary 

objective of the present study. The modified Kratzer 

energy-dependent screened Coulomb potential is given 

by: 

𝑉(𝑟, 𝐸𝑛𝑚) = 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)
2
−

𝐶

𝑟
(1 + g̃𝐸𝑛𝑚)𝑒−δr (1) 

where 𝐷𝑒  is the dissociation energy, 𝑟𝑒  is the equilibrium 

internuclear separation, 𝐶 is the depth of the potential, 𝛿 
is the screening parameter, and g̃ is the slope parameter 

and can be adjusted as desired. 

 

MATERIALS AND METHODS 

In this section, we briefly introduce the Nikiforov-Uvarov Functional Analysis (NUFA) method (Ikot et. al., 2021). 

This method is useful to solve second-order differential wave equations of the hypergeometric-type:  
𝑑2𝜓(𝑠)

𝑑𝑠2 +
𝜏̃(𝑠)

𝜎(𝑠)

𝑑𝜓(𝑠)

𝑑𝑠
+

𝜎̃(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0          (2) 

where 𝜎(𝑠) and 𝜎̃(𝑠) are polynomials at most second degree, and 𝜏̃(𝑠),is a first degree polynomial. Tezcan and Sever 

(2008), latter introduced the parametric form of NU method in the form 
𝑑2𝜓(𝑠)

𝑑𝑠2 +
𝛼1−𝛼2𝑠

𝑠(1−𝛼3𝑠)

𝑑𝜓(𝑠)

𝑑𝑠
+

1

𝑠2(1−𝛼3𝑠)2
[−𝜉1𝑠

2 + 𝜉2𝑠 − 𝜉3]𝜓(𝑠) = 0     (3) 

where 𝛼𝑖 and 𝜉𝑖(𝑖 = 1,2,3) are all parameters. It can be observed in Eq. (3) that the differential equation has two 

singularities at 𝑠 → 0 and 𝑠 → 1, thus it takes the wave function in the form 

𝜓(𝑠) = 𝑠𝜆(1 − 𝑠)𝑣𝑓(𝑠)          (4) 

Substituting Eq. (4) into Eq. (3) leads to the following equation 

𝑠(1 − 𝛼3𝑠)
𝑑2𝑓(𝑠)

𝑑𝑠2 + [𝜎1 + 2𝜆 − (2𝜆𝛼3 + 2𝑣𝛼3 + 𝛼2)𝑠]
𝑑𝑓(𝑠)

𝑑𝑠
− 𝛼3 (𝜆 + 𝑣 +

1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)(𝜆 +

𝑣 +
1

2
(

𝛼2

𝛼3
− 1) − √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2) + [

𝜆(𝜆−1)+𝛼1𝜆−𝜉3

𝑠
+

𝑣(𝑣−1)𝛼3+𝛼2𝑣−𝛼1𝛼3𝑣−
𝜉1
𝛼3

+𝜉2−𝜉3𝛼3

(1−𝛼3𝑠)
] 𝑓(𝑠) = 0 (5) 

Eq. (5) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanish 

𝜆(𝜆 − 1) + 𝛼1𝜆 − 𝜉3 = 0          (6) 

𝑣(𝑣 − 1)𝛼3 + 𝛼2𝑣 − 𝛼1𝛼3𝑣 −
𝜉1

𝛼3
+ 𝜉2 − 𝜉3𝛼3 = 0       (7) 

Thus, Eq. (5) now becomes 

𝑠(1 − 𝛼3𝑠)
𝑑2𝑓(𝑠)

𝑑𝑠2 + [𝜎1 + 2𝜆 − (2𝜆𝛼3 + 2𝑣𝛼3 + 𝛼2)𝑠]
𝑑𝑓(𝑠)

𝑑𝑠
− 𝛼3 (𝜆 + 𝑣 +

1

2
(
𝛼2

𝛼3
− 1) + √

1

4
(
𝛼2

𝛼3
− 1)

2
+

𝜉1

𝛼3
2) ×

(𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) − √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)𝑓(𝑠) = 0       (8) 

Solving Eqs. (6) and (7) completely give 

𝜆 =
1

2
((1 − 𝛼1) ± √(1 − 𝛼1)

2 + 4𝜉3)        (9) 

𝑣 =
1

2𝛼3
((𝛼3 + 𝛼1𝛼3 − 𝛼2) ± √(𝛼3 + 𝛼1𝛼3 − 𝛼2)

2 + 4(
𝜉1

𝛼3
+ 𝛼3𝜉3 − 𝜉2))           (10) 

Eq. (8) is the hypergeometric equation type of the form 

𝑥(1 − 𝑥)
𝑑2𝑓(𝑥)

𝑑𝑥2 + [𝑐 + (𝑎 + 𝑏 + 1)𝑥]
𝑑𝑓(𝑥)

𝑑𝑥
− [𝑎𝑏]𝑓(𝑥) = 0                 (11) 
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where 𝑎, 𝑏, and𝑐 are given as follows 

𝑎 = √𝛼3 (𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)                             (12) 

𝑏 = √𝛼3 (𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) − √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)                             (13) 

𝑐 = 𝛼1 + 2𝜆                                 (14) 

Setting either 𝑎or 𝑏 equal to a negative integer−𝑛, the hypergeometric function 𝑓(𝑠) turns to a polynomial of degree 

𝑛. Hence, the hypergeometric function 𝑓(𝑠) approaches finite in the following quantum condition i.e. 𝑎 = −𝑛, where 

𝑛 = 0,1,2,3, . . . . . 𝑛𝑚𝑎𝑥 

Using the above quantum condition, 

√𝛼3 (𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2) = −𝑛                 (15) 

𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) +

𝑛

√𝛼3
= −√

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2                  (16) 

Squaring both sides of Eq. (16) and rearranging, one obtains the energy equation for the NUFA method as 

𝜆2 + 2𝜆 (𝑣 +
1

2
(

𝛼2

𝛼3
− 1) +

𝑛

√𝛼3
) + (𝑣 +

1

2
(

𝛼2

𝛼3
− 1) +

𝑛

√𝛼3
)

2

−
1

4
(

𝛼2

𝛼3
− 1)

2

−
𝜉1

𝛼3
2 = 0

   

(17) 

By substituting Eqs. (9) and (10) into Eq. (4), one obtains the corresponding wave equation for the NUFA method as 

𝜓(𝑠) = ℕ𝑠
(1−𝛼1)+√(𝛼1−1)2+4𝜉3

2 (1 − 𝛼3𝑠)

(𝛼3+𝛼1𝛼3−𝛼2)+√(𝛼3+𝛼1𝛼3−𝛼2)2+4(
𝜉1
𝛼3

+𝛼3𝜉3−𝜉2)

2𝛼3 𝐹2
 

1(𝑎, 𝑏, 𝑐; 𝑠)       (18) 

where ℕ is the normalization constant.  

Only the positive sign is used above because it ensures a normalizable, physically acceptable wavefunction and 

produces discrete bound-state energies, while the negative sign leads to divergent or non-physical solutions. 

 

Solution of the 2D Schrodinger Equation TiH Diatomic Molecule with Magnetic and AB-flux Fields 

A generalized form of the Schrodinger Equation (SE) for a charged particle moving under the influence of the vector 

potential 𝐴 is written as (Purohit et al., 2020; Rampho et al., 2020; Ikot et al., 2020): 

(𝑖ℏ∇⃗⃗⃗ +
𝑒

𝑐
𝐴)

2

𝜓(𝑟, 𝜙) = 2𝜇[𝐸𝑛𝑚 − 𝑉(𝑟)]𝜓(𝑟, 𝜙)       (19) 

where 𝑒 and 𝜇 are the charge of the particle and reduced mass of the system, respectively, 𝐸𝑛𝑚 is the energy 

eigenvalues, 𝑐is the velocity of light, 𝐴 is the vector potential and 𝑉(𝑟) scalar potential. To indicate the magnetic field 

and AB-flux field together, we express the vector potential 𝐴 as a sum of two terms 𝐴 = 𝐴1 + 𝐴2having azimuthal 

components  

𝐴1 =
𝐵⃗⃗𝑒−𝛿𝑟

1−𝑒−𝛿𝑟 𝜙̂ and 𝐴2 =
Φ𝐴𝐵

2𝜋𝑟
𝜙̂                    (20) 

where 𝐵⃗⃗ is the applied external magnetic field with 1 ,A B =


𝐴2represents the additional magnetic flux ΦAB = 𝜉 

created by a solenoid with ∇⃗⃗⃗ ⋅ 𝐴2 = 0. Then the vector potential 𝐴 can be written as: 

𝐴 = (
𝐵⃗⃗𝑒−𝛿𝑟

1−𝑒−𝛿𝑟 +
𝜉

2𝜋𝑟
) 𝜙̂                     (21) 

where 𝜙̂ is the direction of magnetic flux around the solenoid. Also, we assume a wavefunction in the cylindrical 

coordinates to be of the form: 

𝜓(𝑟, 𝜙) = (2𝜋𝑟)−
1

2𝑒𝑖𝑚𝜙Ω𝑛𝑚(𝑟)                     (22) 

where 𝑚 is the magnetic quantum number.  

Substituting Eq. (1) into Eq. (19), we have 

(𝑖ℏ𝛻⃗⃗ +
𝑒

𝑐
𝐴)

2

𝜓(𝑟, 𝜙) = 2𝜇 [𝐸𝑛𝑚 − 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)

2

+
𝐶

𝑟
(1 + 𝑔̃𝐸𝑛𝑚)𝑒−𝛿𝑟] 𝜓(𝑟, 𝜙)          (23) 

For convenience, let us introduce 𝜆 =
𝑒

𝑐
, so that Eq. (23) becomes 

(𝑖ℏ𝛻⃗⃗ + 𝜆𝐴)
2
𝜓(𝑟, 𝜙) = 2𝜇 [𝐸𝑛𝑚 − 𝐷𝑒 +

2𝐷𝑒𝑟𝑒

𝑟
−

𝐷𝑒𝑟𝑒
2

𝑟2 +
𝐶

𝑟
𝑒−𝛿𝑟 +

𝐶𝑔̃𝐸𝑛𝑚

𝑟
𝑒−𝛿𝑟] 𝜓(𝑟, 𝜙)    (24) 

Using Eqs. (21) and (22) into Eq. (24) we get the 2nd order differential equation (DE) given as follows: 
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𝛺𝑛𝑚
″ (𝑟) + [

2𝜇

ℏ
2 (𝐸𝑛𝑚 − 𝐷𝑒 +

2𝐷𝑒𝑟𝑒

𝑟
−

𝐷𝑒𝑟𝑒
2

𝑟2 +
𝐶

𝑟
𝑒−𝛿𝑟 +

𝐶𝑔̃𝐸𝑛𝑚

𝑟
𝑒−𝛿𝑟) +

1

4𝑟2 −
𝑚2

𝑟2

+
2𝑚𝜆𝐵⃗⃗𝑒−𝛿𝑟

ℏ(1−𝑒−𝛿𝑟)𝑟
+

𝑚𝜆𝜉

ℏ𝜋𝑟2 −
𝜆2𝐵⃗⃗2𝑒−2𝛿𝑟

ℏ
2(1−𝑒−𝛿𝑟)

2 −
𝜆2𝐵⃗⃗𝜉𝑒−𝛿𝑟

ℏ
2(1−𝑒−𝛿𝑟)𝜋𝑟

−
𝜆2𝜉2

4𝜋2ℏ
2𝑟2

]𝛺𝑛𝑚(𝑟) = 0  (25) 

Equation (25) is a complicated differential equation that cannot be solved easily due to the presence of centrifugal 
1

𝑟2 

as well as the reciprocal 
1

𝑟
 terms. Therefore, to bypass these terms we introduce the Greene-Aldrich approximation 

scheme (Greene & Aldrich, 1976). These approximations are given by: 
1

𝑟2 ≈
𝛿2

(1−𝑒−𝛿𝑟)
2 and 

1

𝑟
≈

𝛿

(1−𝑒−𝛿𝑟)
                    (26) 

Using the approximation terms of Eqs. (26) into Eq. (25) we have: 

𝛺𝑛𝑚
″ (𝑟) +

[
 
 
 
 
 
 
 
 

2𝜇𝐸𝑛𝑚

ℏ
2 −

2𝜇𝐷𝑒

ℏ
2 +

4𝜇𝛿𝐷𝑒𝑟𝑒

ℏ
2(1−𝑒−𝛿𝑟)

−
2𝜇𝛿2𝐷𝑒𝑟𝑒

2

ℏ
2(1−𝑒−𝛿𝑟)

2

+
2𝜇𝛿𝐶

ℏ
2(1−𝑒−𝛿𝑟)

𝑒−𝛿𝑟 +
2𝜇𝛿𝐶𝑔̃𝐸𝑛𝑚

ℏ
2(1−𝑒−𝛿𝑟)

𝑒−𝛿𝑟 +
2𝑚𝛿𝜆𝐵⃗⃗

ℏ(1−𝑒−𝛿𝑟)
2 𝑒−𝛿𝑟

−
𝜆2𝐵⃗⃗2

ℏ
2(1−𝑒−𝛿𝑟)

2 𝑒−2𝛿𝑟 −
𝜆2𝛿𝐵⃗⃗𝜉

ℏ
2𝜋(1−𝑒−𝛿𝑟)

2 𝑒−𝛿𝑟

−
[(𝑚−𝛾)2−

1

4
]𝛿2

(1−𝑒−𝛿𝑟)
2

]
 
 
 
 
 
 
 
 

𝛺𝑛𝑚(𝑟) = 0     (27) 

where we have defined the following parameters as 𝜙0 =
ℎ𝑐

𝑒
 and  𝛾 =

𝜉

𝜙0
. 

Now introducing the NUFA method of Eq. (3) into Eq. (27) with the following coordinate transformation 𝑧 = 𝑒−𝛿𝑟 . 
Equation (27) becomes 

𝑑2𝛺𝑛𝑚(𝑟)

𝑑𝑧2 +
1

𝑧

𝑑𝛺𝑛𝑚(𝑟)

𝑑𝑧
+

1

𝑧2

[
 
 
 
 
 

2𝜇𝐸𝑛𝑚

ℏ
2𝛿2 −

2𝜇𝐷𝑒

ℏ
2𝛿2 +

4𝜇𝐷𝑒𝑟𝑒

ℏ
2𝛿(1−𝑧)

−
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2(1−𝑧)2

+
2𝜇𝐶

ℏ
2𝛿(1−𝑧)

𝑧 +
2𝜇𝐶𝑔̃𝐸𝑛𝑚

ℏ
2𝛿(1−𝑧)

𝑧 +
2𝑚𝜆𝐵⃗⃗

ℏ𝛿(1−𝑧)2
𝑧

−
𝜆2𝐵⃗⃗2

ℏ
2𝛿2(1−𝑧)2

𝑧2 −
𝜆2𝐵⃗⃗𝜉

ℏ
2𝜋𝛿(1−𝑧)2

𝑧 −
[(𝑚−𝛾)2−

1

4
]

(1−𝑧)2 ]
 
 
 
 
 

𝛺𝑛𝑚(𝑟) = 0   (28) 

To make Eq. (28) solvable with NUFA method, let’s introduce the following dimensionless parameters 

−𝜀𝑛𝑚 =
2𝜇𝐸𝑛𝑚

ℏ
2𝛿2 , 𝑄1 = −

2𝜇𝐷𝑒

ℏ
2𝛿2 , 𝑄2 =

4𝜇𝐷𝑒𝑟𝑒

ℏ
2𝛿

, 𝑄3 = −
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2 , 𝑄4 =

2𝜇𝐶

ℏ
2𝛿

, 𝑄5 =
2𝜇𝑎𝑔̃𝐸𝑛𝑚

ℏ
2𝛿

, 𝑄6 =
2𝑚𝜆𝐵⃗⃗

ℏ𝛿
, 𝑄7 = −

𝜆2𝐵⃗⃗2

ℏ
2𝛿2 ,  

𝑄8 = −
𝜆2𝐵⃗⃗𝜉

ℏ
2𝛿𝜋

, 𝑄9 = − [(𝑚 − 𝛾)2 −
1

4
]              (29) 

𝑑2Ω𝑛𝑚(𝑟)

𝑑𝑧2 +
1

𝑧

𝑑Ω𝑛𝑚(𝑟)

𝑑𝑧
+

1

𝑧2 [
−𝜀𝑛𝑚 + 𝑄1 +

𝑄2

(1−𝑧)
+

𝑄3

(1−𝑧)2
+

𝑄4𝑧

(1−𝑧)
+

𝑄5𝑧

(1−𝑧)

+
𝑄6𝑧

(1−𝑧)2
+

𝑄7𝑧2

(1−𝑧)2
+

𝑄8𝑧

(1−𝑧)2
+

𝑄9

(1−𝑧)2

] Ω𝑛𝑚(𝑟) = 0   (30)

 
and for mathematical simplicity and convenience Eq. (30) becomes: 
𝑑2Ω𝑛𝑚(𝑟)

𝑑𝑧2 +
(1−𝑧)

𝑧(1−𝑧)

𝑑Ω𝑛𝑚(𝑟)

𝑑𝑧
+

1

𝑧2(1−𝑧)2
[−(𝜀𝑛𝑚 + 𝑝1)𝑧

2 + (2𝜀𝑛𝑚 + 𝑝2)𝑧 − (𝜀𝑛𝑚 + 𝑝3)]Ω𝑛𝑚(𝑟) = 0    (31) 

Where 

𝑝1 = −𝑄1 + 𝑄4 + 𝑄5 − 𝑄7,     𝑝2 = −2𝑄1 − 𝑄2 + 𝑄4 + 𝑄5 + 𝑄6 + 𝑄8,    𝑝3 = −𝑄1 − 𝑄2 − 𝑄3 − 𝑄9   (32) 

And 

𝛼1 = 𝛼2 = 𝛼3 = 1, 𝜉1 = 𝜀𝑛𝑚 + 𝑝1, 𝜉2 = 2𝜀𝑛𝑚 + 𝑝2, 𝜉3 = 𝜀𝑛𝑚 + 𝑝3       (33) 

By comparing Eq. (31) with the NUFA method of Eq. (3), then we obtain the following: 

𝜆 = √𝜀𝑛𝑚 + 𝑝3           (34) 

and 

𝑣 =
1

2
+ √

1

4
+ 𝜉1 − 𝜉2 + 𝜉3         (35) 

Substituting Eqs. (33), (34) and (35) into Eq. (17), we get the energy eigenvalues as: 

𝜀𝑛𝑚 + 𝑝3 = [
𝑝1−𝑝3−(𝑛+𝑣)2

2(𝑛+𝑣)
]
2

          (36) 

Substituting Eqs. (29) and (32) into Eq. (36), we get 

𝐸𝑛𝑚 = 𝐷𝑒 − 2𝐷𝑒𝛿𝑟𝑒 + 𝐷𝑒𝛿
2𝑟𝑒

2 +
ℏ
2𝛿2

2𝜇
[(𝑚 − 𝛾)2 −

1

4
] −

ℏ
2𝛿2

2𝜇
[

2𝜇𝐶

ℏ
2𝛿

+
2𝜇𝐶𝑔̃𝐸𝑛𝑚

ℏ
2𝛿

+
𝜆̃2𝐵⃗⃗⃗2

ℏ
2𝛿2

+
4𝜇𝐷𝑒𝑟𝑒

ℏ
2𝛿

−
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2 −[(𝑚−𝛾)2−

1

4
]−(𝑛+𝑣)2

2(𝑛+𝑣)
]

2

 

            (37) 
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where 

𝜆 =
1

2
+ √𝜆2𝐵⃗⃗2

ℏ
2𝛿2 +

2𝜇𝐷𝑒𝑟𝑒
2

ℏ
2 + (𝑚 − 𝛾)2 −

2𝑚𝜆𝐵⃗⃗

ℏ𝛿
+

𝜆2𝐵⃗⃗𝜉

ℏ
2𝛿𝜋

        (38) 

Equation (37) is an implicit self-consistent equation for the bound-state energy 𝐸𝑛𝑚, as it appears on both sides. It is 

solved numerically using an iterative procedure, starting from an initial guess and updating until convergence is 

achieved within a specified tolerance. Some optional methods of solution includes fixed-point iteration, Newton–

Raphson, or fsolve. 

Substituting Eqs. (29), (32) and (33) into Eq. (18), the corresponding Energy eigenfunction equation can be obtained 

as: 

Ω𝑛𝑚(𝑧) = ℵ𝑛ℓ𝑧
√−

2𝜇𝐸𝑛𝑚

ℏ
2𝛿2

+
2𝜇𝐷𝑒

ℏ
2𝛿2

−
4𝜇𝐷𝑒𝑟𝑒

ℏ
2𝛿

+
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2 +[(𝑚−𝛾)2−

1

4
]

× (1 − 𝑧)

1

2
+√

1

4
+

2𝜇𝐷𝑒

ℏ
2𝛿2

+
2𝜇𝐶

ℏ
2𝛿

+
2𝜇𝐶𝑔̃𝐸𝑛𝑚

ℏ
2𝛿

+
𝜆2𝐵⃗⃗⃗2

ℏ
2𝛿2

𝐹2 1(𝑎, 𝑏, 𝑐; 𝑧) 

            (39) 

where 𝑎 = 𝛽 + 𝜎 + √𝜀𝑛𝑚 + 𝑝1, 𝑏 = 𝛽 + 𝜎 − √𝜀𝑛𝑚 + 𝑝1, 𝑐 = 1 + 2𝛽 and ℵ𝑛ℓ is the normalization constant. 

 

Magnetic Properties of TiH Diatomic Molecule 

It is well known that the partition function of a system can be used to obtain all thermodynamic and magnetic properties 

(Edet et al, 2022). Easy summation over all vibrational energy levels available to the system can be used to calculate 

the vibrational partition function. Given the energy spectrum in Eq. (37), the partition function 𝑍(𝛽) of the titanium 

hydride with Modified Kratzer potential Energy-Dependent Screened Coulomb potential at finite temperature, T, is 

obtained with the Boltzmann factor as; 

𝑍(𝛽) = ∑ 𝑒−𝛽𝐸𝑛𝑛𝑚𝑎𝑥∑
𝑛=0                           (40) 

where 1
,

k T
 = 𝑘𝐵 is the Boltzmann’s constant. To calculate the summation in the partition function, the energy 

eigenvalues in Eq. (39) can be rewritten in the compact form; 

𝐸𝑛𝑚 = 𝑃1 −
ℏ
2𝛼2

2𝜇
(

𝑅1−(𝑛+𝑣)2

2(𝑛+𝑣)
)

2

                    (41) 

where 

𝑃1 = 𝐷𝑒 − 2𝐷𝑒𝛿𝑟𝑒 + 𝐷𝑒𝛿
2𝑟𝑒

2 +
ℏ
2𝛿2

2𝜇
[(𝑚 − 𝛾)2 −

1

4
]       (42) 

𝑅1 =
2𝜇𝐶

ℏ
2𝛿

+
2𝜇𝐶𝑔̃𝐸𝑛𝑚

ℏ
2𝛿

+
𝜆2𝐵⃗⃗2

ℏ
2𝛿2 +

4𝜇𝐷𝑒𝑟𝑒

ℏ
2𝛿

−
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2 − [(𝑚 − 𝛾)2 −

1

4
]                (43) 

𝑣 =
1

2
+ √𝜆2𝐵⃗⃗2

ℏ
2𝛿2 +

2𝜇𝐷𝑒𝑟𝑒
2

ℏ
2 + (𝑚 − 𝛾)2 −

2𝑚𝜆𝐵⃗⃗

ℏ𝛿
+

𝜆2𝐵⃗⃗𝜉

ℏ
2𝛿𝜋

       (44) 

It should be noted here that the maximum value 𝑛𝑚𝑎𝑥can be obtained by setting 
𝑑𝐸𝑛

𝑑𝑛=0
.  

𝑛√𝑃1𝑚𝑎𝑥
                      (45) 

To evaluate the integral in Eq. (40), we write the integral as follows:  

𝑍(𝛽) = ∫ 𝑒
𝛽(𝑃2(𝑛+𝑣)2+

𝑄
(𝑛+𝑣)

+𝑅2)𝑛𝑚𝑎𝑥∫

0
                  (46) 

or explicitly 

𝑍(𝛽) = ∫ 𝑒
𝛽(𝑃2𝜌2+

𝑄

𝜌2+𝑅2)𝑛𝑚𝑎𝑥∫

𝑣
                              (47) 

where we have defined; ,n v = + 𝑃2 =
ℏ2𝛼2

8𝜇
, 𝑄 =

ℏ2𝛼2𝑅1
2

8𝜇
, 𝑅2 =

ℏ2𝛼2𝑅1

4𝜇
− 𝑃1 and the limits of integral is given as: 𝑣 ≤

𝜌 ≤ 𝑛𝑚𝑎𝑥  

Evaluating Eq. (47), the partition function of the titanium hydride with modified Kratzer potential plus Energy-

Dependent screened Coulomb potential in the presence of magnetic and AB-flux fields is obtain as follows using 

Mathematica 9.0 Software; 

𝑍(𝛽) = −
𝑒−2√−𝑄𝛽√−𝛽𝑃2+𝛽𝑅2√𝜋(−𝐸𝑟𝑓[Ξ1]+Δ3𝐸𝑟𝑓[Ξ2]+𝐸𝑟𝑓[Ξ3]−Δ3𝐸𝑟𝑓[Ξ4])

4√−𝛽𝑃2
     (48)

 where we have used the following notations for mathematical simplicity and convenience  

Ξ1 =
√−𝑄𝛽

𝑣
− 𝑣√−𝛽𝑃2, Ξ2 =

√−𝑄𝛽

𝑣
+ 𝑣√−𝛽𝑃2, Ξ3 =

√−𝑄𝛽

𝑣
− 𝑣√−𝛽𝑃2 − 𝑛√−𝛽𝑃2, Ξ4 =

√−𝑄𝛽

𝑣
+ 𝑣√−𝛽𝑃2 +

𝑛√−𝛽𝑃2and Δ3 = 𝑒4√−𝑄𝛽√−𝛽𝑃2            (49) 

where 𝐸𝑟𝑓 denotes the error function which can be defined as 
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𝐸𝑟𝑓(𝑧) =
2

√𝜋
∫ 𝑒𝑡2𝑧

0
𝑑𝑡   (50) 

The partition function in Eq. (40) can be used to obtain 

magnetic properties of the Modified Kratzer potential 

plus Energy-Dependent Screened Coulomb potential in 

the presence of the magnetic and AB-flux fields, such as 

the magnetization (M), magnetic susceptibility (𝜒𝑚), and 

persistent current (I). The following expressions can be 

used to calculate the system’s magnetic properties (Edet 

et al, 2022): 

𝑀(𝛽) =
1

𝛽
(

1

𝑍(𝛽)
) (

∂

∂𝐵⃗⃗
𝑍(𝛽))  (51) 

𝜒𝑚(𝛽) =
∂𝑀(𝛽)

∂𝐵⃗⃗
    (52) 

and 

𝐼(𝛽) = −
𝑒

ℎ𝑐

∂𝐹(𝛽)

∂𝑚
    (53) 

 

RESULTS AND DISCUSSION 

The obtained energy eigenvalues results are discussed 

graphically in this section, focusing on the magnetic 

properties of the titanium hydride diatomic molecule. For 

all calculations, the molecular and physical parameters 

are chosen as  

𝐷𝑒 = 2.05 eV, 𝑟𝑒 = 1.781 Å, 𝛿 = 1.32408 Å
−1

,  𝜇 =
0.987371 a.m.u = 931.494028 MeV𝑐−2, ℏ𝑐 =

1973.269 eVÅ   Oyewumi et al., 2014). 

 

Magnetic Properties Versus Inverse Temperature 

Figure 1 illustrates the variation of the partition function 

with inverse temperature for slope parameter values g̃ =
−1, 0,+1. Each curve starts from a distinct value in the 

negative domain and increases monotonically with 

increasing inverse temperature. At higher inverse 

temperature values, all curves exhibit convergent 

behavior toward a common value. The curve 

corresponding to g̃ = −1 lies above those for g̃ = 0and 

g̃ = +1, with the separation between the curves gradually 

narrowing as convergence occurs. 

 

 
Figure 1: Partition function as a function of inverse temperature 

𝛽(𝐾−1)varying with Energy slope parameter g̃ 
 
Figure 2 below shows the variation of magnetization with 

inverse temperature. Magnetization decreases 

monotonically with increasing inverse temperature for all 

slope parameter values, remaining entirely in the positive 

domain. The curve for g̃ = −1lies innermost, followed by 

g̃ = 0, and then g̃ = +1. The nearly constant spacing 

between the curves indicates uniform relative behavior 

across slope values. 

 

 
Figure 2: Magnetization as a function of inverse temperature 

𝛽(𝐾−1)varying with Energy slope parameter g̃ 
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Figure 3 below presents the magnetic susceptibility as a 

function of inverse temperature. All curves lie in the 

negative susceptibility domain and increase 

monotonically with increasing inverse temperature, 

approaching a common convergence point. The curve for 

g̃ = −1 is outermost, followed by g̃ = 0 and g̃ = +1. 

Although initially distinct, the spacing between the curves 

decreases at higher inverse temperatures. 

 

 
Figure 3: Magnetic Susceptibility as a function of inverse 

temperature 𝛽(𝐾−1)varying with Energy slope parameter g̃ 

 

Figure 4 below depicts the variation of persistent current 

with inverse temperature. Persistent current decreases 

monotonically with increasing inverse temperature and 

remains in the positive domain. The curve for g̃ = −1has 

the lowest magnitude, g̃ = 0lies intermediate, and g̃ =
+1 produces the highest persistent current values. 

 

 
Figure 4: Persistent current as a function of inverse 

temperature 𝛽(𝐾−1)varying with Energy slope parameter g̃ 

 

Magnetic Properties Versus Magnetic Field 

Figure 5 shows the partition function as a function of 

magnetic field for the three slope parameter values. All 

curves begin with saturation at zero and undergo a sharp 

drop around magnetic field values of approximately 

0.0008–0.0009 T. Beyond this region, the curves diverge 

slightly while maintaining consistent relative positions. 

The outermost curve corresponds to g̃ = −1, followed by 

g̃ = 0, with g̃ = +1innermost. 
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Figure 5: Partition function as a function of AB-flux field 

𝜉(𝑇)varying with Energy slope parameter g̃ 

 

Figure 6 below illustrates the variation of magnetization 

with magnetic field. Magnetization increases with 

increasing magnetic field and remains positive for all 

slope values. The curve for g̃ = −1crosses that of g̃ = 0at 

very low magnetic fields (𝐵 < 0.0002 T) before 

diverging more strongly. The curves for g̃ = 0and g̃ =
+1remain closely spaced, with g̃ = +1producing the 

highest magnetization values. 

 

 
Figure 6: Magnetization as a function of magnetic field 𝐵(𝑇)varying 

with Energy slope parameter g̃ 

 

Figure 7 below presents magnetic susceptibility as a 

function of magnetic field. All curves lie in the positive 

domain. The g̃ = −1 curve exhibits non-monotonic 

behavior, showing an initial decrease followed by an 

increase. The g̃ = 0curve increases smoothly, while g̃ =
+1rises more rapidly toward early saturation. 

 

 
Figure 7: Magnetic Susceptibility as a function of magnetic field 

𝐵(𝑇)varying with Energy slope parameter g̃ 
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Figure 8 below shows the persistent current versus 

magnetic field. The curves diverge increasingly with 

magnetic field strength. The curve for g̃ = +1is 

uppermost, followed by g̃ = 0, while g̃ = −1lies lowest 

after crossing the g̃ = 0curve at low magnetic field 

values. 

 

 
Figure 8: Persistent current as a function of magnetic field 

𝐵(𝑇)varying with Energy slope parameter g̃ 

 

Magnetic Properties Versus Aharonov–Bohm Flux 

Field 

Figure 9 displays the partition function as a function of 

the AB-flux field. All curves initially saturate at zero and 

then experience a sharp decline around 0.008–0.009 T. 

After this drop, the curve for g̃ = −1lies outermost, 

followed by g̃ = 0 and g̃ = +1. The spacing between 

curves remains nearly constant thereafter. 

 

 
Figure 9: Partition function as a function of AB-flux field 

𝜉(𝑇)varying with Energy slope parameter g̃ 

 

Figure 10 below shows the magnetization versus AB-flux 

field. All curves exhibit an initial sharp drop to a 

minimum at AB-flux values below 0.002 T, followed by 

a rapid increase and eventual saturation near 4750 units. 

After the minima, the curve for g̃ = −1is uppermost, 

followed by g̃ = 0, with g̃ = +1 lowest. 
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Figure 10: Magnetization as a function of AB-flux field 𝜉(𝑇)varying 

with Energy slope parameter g̃ 

 

Figure 11 belwo presents the magnetic susceptibility 

versus AB-flux field. All curves lie in the negative 

domain. The susceptibility for g̃ = −1remains constant at 

zero, while g̃ = 0shows a nearly flat negative response. 

In contrast, g̃ = +1exhibits a large negative susceptibility 

at low flux values, followed by a rapid increase and 

eventual convergence with the other curves. 

 

 
Figure 11: Magnetic Susceptibility as a function of AB-flux field 

𝜉(𝑇)varying with Energy slope parameter g̃ 

 

Figure 12 below depicts the persistent current versus AB-

flux field. All curves show a sharp rise around 0.01 T, 

followed by saturation and convergence near 5150 units. 

The persistent current is highest for g̃ = −1, intermediate 

for g̃ = 0, and lowest for g̃ = +1. 

 

 
Figure 12: Persistent current as a function of AB-flux field 

𝜉(𝑇)varying with Energy slope parameter g̃ 
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CONCLUSION 

In this work, the magnetic properties of the titanium 

hydride diatomic molecule have been investigated using 

the modified Kratzer energy-dependent screened 

Coulomb potential in the presence of external magnetic 

and Aharonov–Bohm flux fields. Closed-form solutions 

of the Schrödinger equation were obtained via the 

Nikiforov–Uvarov Functional Analysis method and used 

to evaluate thermodynamic and magnetic quantities. The 

results show that the slope parameter plays a decisive role 

in determining the strength, ordering, and convergence 

behavior of the partition function, magnetization, 

magnetic susceptibility, and persistent current. Negative 

slope values enhance magnetic responses, while positive 

values suppress them. External magnetic fields induce 

divergence and saturation effects, whereas AB-flux fields 

produce sharp transitions, minima, and convergence 

phenomena. Overall, the combined influence of the slope 

parameter and external fields provides an effective 

mechanism for tuning the magnetic behavior of the TiH 

diatomic molecule, with potential relevance to molecular 

magnetism, spectroscopy, and field-controlled quantum 

systems. 
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