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Magnetic Properties of Titanium Hydride (TiH) Diatomic Molecule with Modified Kratzer
Energy-Dependent Screened Coulomb Potential in the Presence of Magnetic and
Aharonov-Bohm Flux Fields

\TU
\‘A‘i‘" Te e

4

g«

e

N E’?I.q
>

Sols N

*!Ishaya Sunday Danladi, *Yakubu Yerima Jabil and 2Lawrence Davou Christopher

'NNPC Downstream Investment Service, NNPC Towers, Central Business District Abuja, Abuja, Nigeria.
2Department of Physics, University of Jos, Plateau State, Nigeria.

*Corresponding Author’s Email: ishayadan@gmail.com

ABSTRACT

In this study, the modified Kratzer energy-dependent screened Coulomb potential
is analyzed in the presence of external magnetic and Aharonov—Bohm (AB) flux
fields. The Schrodinger equation is solved using the Nikiforov—Uvarov Functional
Analysis (NUFA) method, yielding closed-form expressions for the energy
eigenvalues and the corresponding wavefunctions. These solutions are applied to
investigate the magnetic properties of the titanium hydride (TiH) diatomic
molecule, including the partition function, magnetization, magnetic susceptibility,
and persistent current. The effects of the slope parameter are examined in detail
and found to play a significant role in controlling the magnitude, ordering, and
convergence behavior of all magnetic observables. Negative slope values enhance
the magnetic and thermodynamic responses of the system, while positive slope
values suppress them, with the zero-slope case acting as an intermediate regime.
The magnetic field induces divergence and saturation effects, whereas the AB-
flux field governs sharp transitions, minima, and convergence characteristics.
Overall, the results demonstrate that both the slope parameter and external fields
provide effective mechanisms for tuning the magnetic behavior of the TiH
diatomic molecule.

Keywords:
Aharonov—Bohm (AB) flux,
Magnetic properties,
Slope parameter,
Titanium  Hydride
Diatomic molecule.

(TiH)

NIGERIAN JOURNAL OF PHYSICS

INTRODUCTION

In fact, the study of diatomic molecules (DMs) is a crucial
aspect of quantum chemistry and atomic physics. Several
authors have recently examined the solution of relativistic
and nonrelativistic wave equations to understand the
behaviours of numerous DMs in various molecular
potentials (Abu-Shady, Abdel-Karim & Khokha, 2021).
The analytical solution of the radial Schrodinger Equation
(SE) is of high importance in nonrelativistic quantum
mechanics, since the wave function contains all the
necessary information to describe a quantum system
fully.

Recent studies have incorporated the thermodynamic
properties of these systems to better understand their
behavior. For instance (Gumber, Kumar, Gambhir,
Mohan & Kumar, 2015) investigated the properties of a
two-dimensional cylindrical quantum dot in the presence
of both electric and magnetic fields, calculating the
canonical partition function along with other statistical
mechanical properties. The partition function, a key
quantity in statistical mechanics, is used to evaluate

thermal properties, with its temperature dependence
allowing for the computation of thermodynamic variables
such as heat capacity, entropy, and free energy. The
concept of the partition function, introduced by
Boltzmann in the 1870s (Ebeling & Sokolov, 2005), plays
a central role in these analyses. Eshghi, Mehraban &
Ikhdair (2017) also obtained energy eigenvalues and
examined the thermal properties of a position-dependent
mass charged particle influenced by external magnetic
fields. Oyewumi et al. (2014) studied the radial
Schrédinger equation with a Deng—Fan potential model,
calculating the system's thermodynamic properties and
analyzing how the partition function, heat capacity,
entropy, mean energy, and free energy varied with
temperature. Using the Pseudoharmonic potential in the
presence of both magnetic and AB fields, Ikot e al.
(2020) investigated thermodynamic properties within the
framework of superstatistics. Song, Wang & Jia (2017)
computed the thermodynamic properties of a sodium
dimer under the improved Rosen—Morse potential,
finding good agreement with experimental results. Dong
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and Cruz-Irisson (2012) analyzed the thermodynamic
properties of the modified Rosen-Morse potential using
an appropriate quantization rule. Onate & Onyeaju (2016)
calculated the thermodynamic properties of the Frost-
Musulin potential via partition function, while Ikot ez al.
(2019) studied the exact and Poisson summation
thermodynamic properties for diatomic molecules with
Tietz potential. Further, Ikot et al. (2020) explored the
screened Kratzer potential in the presence of both
magnetic and AB flux fields in two-dimensional space,
using the factorization method and investigating a range
of thermodynamic properties. lkot et al. (2019)
demonstrated that by solving the Schrédinger equation
for the screened Kratzer potential, one can derive the
vibrational partition function and subsequently compute
various thermodynamic properties of diatomic systems.

Extending these approaches to systems under external
influences, Edet et al. (2021) showed that the inclusion of
magnetic and Aharonov—Bohm fields in a Yukawa
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potential framework results in discernible shifts in energy
eigenvalues that directly affect persistent currents,
magnetic susceptibility, and related thermal properties.
Nevertheless, despite the extensive body of existing
research, our review reveals that the magnetic properties
of the titanium hydride (TiH) diatomic molecule, modeled
using the modified Kratzer energy-dependent screened
Coulomb potential, have not yet been investigated in the
presence of external magnetic and Aharonov—Bohm (AB)
flux fields. Addressing this gap constitutes the primary
objective of the present study. The modified Kratzer
energy-dependent screened Coulomb potential is given
by:

2
V0, Enm) = De (=) = £(1+ gEpm)e™™ (1)
where D, is the dissociation energy, 7, is the equilibrium
internuclear separation, C is the depth of the potential, §
is the screening parameter, and § is the slope parameter
and can be adjusted as desired.

In this section, we briefly introduce the Nikiforov-Uvarov Functional Analysis (NUFA) method (Ikot et. al, 2021).
This method is useful to solve second-order differential wave equations of the hypergeometric-type:

d?(s)

ds?

() dll)(S)
a(s) ds

G (s) = 0

62(5)

2

where o (s) and 6 (s) are polynomials at most second degree, and 7(s),is a first degree polynomial. Tezcan and Sever
(2008), latter introduced the parametric form of NU method in the form

d?i(s)

ds?

ar—azs dy(s)
s(1-a3s) ds

s2(1-azs)?

[ 515 + &5 —&lYs) =0

3)

where a; and &;(i = 1,2,3) are all parameters. It can be observed in Eq. (3) that the differential equation has two
singularities at s = 0 and s — 1, thus it takes the wave function in the form

W(s) = s*(1 = s)f(s) “4)
Substituting Eq. (4) into Eq. (3) leads to the following equation
f( ) df( ) 1 1 2
s(1 — azs) S+[1+2/1 (2Aas + 2va; + ay)s] —— 3<A+U+E(Z—z—1)+ Z(Z_:_ ) +i—1§)(/1+
§1
1/a, 2 g AA-D+a;A—&5 v(v—l)a3+a2v—a1a3v—a—3+€2—€3a3 _
v+1 (a3 1) - Z(Z —1) + 75) + [ - + . f(s)=0 (5)
Eq. (5) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanish
v(v—Das +a2v—a1a3v—i—1+§2 —&az; =0 7
3
Thus, Eq. (§) now becomes
f( ) f( ) 1 1 z ¢
s(1—azs 01+ 21 — QAaz + 2vaz + ay)s]|—— — a3 A+v+5(z—z—1)+\jz(zz 1) +a—§ X
1 a 2 §1 —

</1+v+5(——1) 4(a3 1) +a—§>f(s)—0 (8)
Solving Egs. (6) and (7) completely give

=1 -a) £ /T -a)?+4g) ©

_ ! 2 §1
v—£<(a3+a1a3—a2)i\/((x3+a1a3—a2) +4’( +azés — fz)) (10)
Eq. (8) is the hypergeometric equation type of the form
x(1 =02 e+ @@+ b+ D] LD~ [ablf(x) = 0 (11)
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where a, b, andc are given as follows

a=¢a—3<z+v+§(g_§_1)+ /;(3—3—1)%%) (12)

- ey \_ |1fz_4\V L&
b= Ja, <A+v+5(a—3 1) 4(0(3 1) +a§> (13)
c=a;+ 21 (14)
Setting either aor b equal to a negative integer—n, the hypergeometric function f(s) turns to a polynomial of degree
n. Hence, the hypergeometric function f (s) approaches finite in the following quantum condition i.e. @ = —n, where

Using the above quantum condition,

\/a_3</1+v+%(2—§—1)+ }(2—2—1)2+%)=—n (15)

1(a, n _ _ (1fay 2 f_l
A+‘U+E(a—3— )+\/?3— 4-(0(3 ) +a§ (16)
Squaring both sides of Eq. (16) and rearranging, one obtains the energy equation for the NUFA method as
2 2
2 1(ez _ o 1(ez _ ) e _5
A +2/1<17+2(a3 1)+\/a_3>+<v+2(a3 1)+\/a_3> 4(a3 1) =0 (17)
By substituting Egs. (9) and (10) into Eq. (4), one obtains the corresponding wave equation for the NUFA method as
U‘“l”M (a3+a1a3—a2)+J(a3+a1u3—a2)2+4(%+a3§3—§2)
P(s) = Ns 2 1 — azs) 2a3 oFi(a,b,c;s) (18)

where N is the normalization constant.
Only the positive sign is used above because it ensures a normalizable, physically acceptable wavefunction and
produces discrete bound-state energies, while the negative sign leads to divergent or non-physical solutions.

Solution of the 2D Schrodinger Equation TiH Diatomic Molecule with Magnetic and AB-flux Fields
A generalized form of the Schrodinger Equation (SE) for a charged particle moving under the influence of the vector

potential A is written as (Purohit et al., 2020; Rampho ef al., 2020; Ikot et al., 2020):
- N2
(ih¥ +£A) 9, ¢) = 20( By — VO, ) (19)

where e and p are the charge of the particle and reduced mass of the system, respectively, E,,, is the energy
eigenvalues, cis the velocity of light, A is the vector potential and V (r) scalar potential. To indicate the magnetic field

and AB-flux field together, we express the vector potential A as a sum of two terms 4 = /Tl + /Tzhaving azimuthal

components
> Be 0T N @ ~
A, = 1_‘1—_&¢> and A, = 42 (20)

2nr

where B is the applied external magnetic field with V x z_‘il =B R /Tzrepresents the additional magnetic flux ®,5 = &
created by a solenoid with V- 52 = (. Then the vector potential A can be written as:

o (BT £\ o

A= (Tt 1)

2nr
where ¢ is the direction of magnetic flux around the solenoid. Also, we assume a wavefunction in the cylindrical

coordinates to be of the form:

[y
W, @) = (2nr) 2e™ P Qp (1) (22)
where m is the magnetic quantum number.
Substituting Eq. (1) into Eq. (19), we have

= e »\? r—Te 2 C ~ —_or
(in7 +24) 9 8) = 201 | Enm — De (Z22)" + S (1 + GEnmde ™" |9, ¢) (23)
For convenience, let us introduce 1 = ;, so that Eq. (23) becomes

2 >\ 2 2DeTe  Deré . C _ CHEnm —
(ih7 + 28) P (r, §) = 201 B — D + 227 — 221E 4 S =0 . LB o =67y, ) (24)

Using Egs. (21) and (22) into Eq. (24) we get the 2" order differential equation (DE) given as follows:
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2 2D, Der? _ CJE _ 1 m?2
_12‘ E D 4 Zele eTe _ Dele + ¢ Sr 4 L9%nam dEnm e or + _
" h nm 72 - 4r2 r2
Qum () + | pagesr mAf A2B2e=28T Azsfe—& 2282 Dy (r) =0 (25)

h(1-e=")r  hnr2 - ;,2(1_9—61‘)2 - #2(1-e=8")mr T am2iZy2
Equation (25) is a complicated differential equation that cannot be solved easily due to the presence of centrifugal =

. 1 . . . .
as well as the reciprocal - terms. Therefore, to bypass these terms we introduce the Greene-Aldrich approximation

scheme (Greene & Aldrich, 1976). These approximations are given by:
1 52 1 5

7~ ey M G 26
Using the approx1mat10n terms of Eqs. (26) into Eq. (25) we have:
2UEnm _ 2uD, 4USDTe 2062 D, 1
n? n? h2 (1 e—dr) h2(1 e—&r)
n 2u8C _&r | 2U8CGEnm __gr 2méAB  _gp
) 2(-e) ¢ 72 (1-e-or) H1—e—o)?
D (1) + B a5 A?8BE —or Dy () =0 (27)
12 (1-e-07)° w2m(1-e~or)
_Jon- y)2—1]62
(1-e-0r)? ]
where we have defined the following parameters as ¢, = — and y = ¢i

Now introducing the NUFA method of Eq. (3) into Eq. (27) with the following coordinate transformation z = e 9",

Equation (27) becomes

2UEnm _ 2MDe 4uDeTe  2uDeré
#2862 h%82 | W?8(1-z) h*(1-2)2

A20pm(™) . 1d2pm@™) 1 2uc 2uCGEnm 2mAB _

T a Tzl Tmaaf T ean T saar? () =0 (28)

2B, a2Be |men2]
7282(1-2)2 rs(1-2)2 (1-2)2
To make Eq. (28) solvable with NUFA method, let’s introduce the following dimensionless parameters
2UE, 2uD, 4yD T, z,uD ré 2uc 2uageE, 2mAB A2B2
—&m = hz;Zm'Q1__hz—52e:Q2— =£,Q3 = 7, Q4 = Ty Qs = hsnm Qs = T’Q7:_ﬁ’
A2B¢ 1
Qg=—m.09=—[(m—)/)2—-] (29)
Q2 Q3 Q4z Qsz

d2Qpm (1) +ldQnm(r) S “Enm + Q1+ (1-2) + (1-2)2 + (1-2) + (1-2) Q. (1) =0 30

dz? z dz z2 Q6Z + Q72> + Qgz + Qo nm ") = (30)

1-22 ° (1-22  (1-2?  (1-2)?

and for mathematical simplicity and convenience Eq. (30) becomes:
d?Qnm () (1-2) dQpm (™) 1

d’;’; 2(1-2) 1;1;1 + 22(1-2)2 [_(Snm + pl)Zz + (Zgnm + pZ)Z - (Enm + p3)]Qnm(r) =0 (31)
Where
P1=—0Q1+0Qs+0Q5—0Q7, P2=-201-02+0Q4+05+Qs+0s p3=—01—02—0Q3—Q (32)
And
ay=a,=a3=1,& = Epnt+ P, § = 260m + P2 §3 = Enm T3 (33)

By comparing Eq. (31) with the NUFA method of Eq. (3), then we obtain the following:

A= v Enm T P3 (34)

and

1 1
V=;+ /Z+f1_52+f3 (35)
Substituting Egs. (33), (34) and (35) into Eq. (17), we get the energy eigenvalues as:

_ p1—p3—(n+v)? z
Em + Py = [T (36)

Substituting Egs. (29) and (32) into Eq. (36), we get
uC ZuCgEnm 1282 4uD5re ZuDgre

o 22, HP8? N2 MM i%s %82 iPs 12
Eym = D, — 2D,67, + D, 6%1F + on [(m Y) ] 2 2(n+v)

2
[n-1)?2-3]-(n+v)?

37
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where

2 1B 128
R G8)
Equat1on (37) is an 1mphclt self-consistent equation for the bound-state energy E,,,, as it appears on both sides. It is
solved numerically using an iterative procedure, starting from an initial guess and updating until convergence is
achieved within a specified tolerance. Some optional methods of solution includes fixed-point iteration, Newton—
Raphson, or fsolve.
Substituting Eqs. (29), (32) and (33) into Eq. (18), the corresponding Energy eigenfunction equation can be obtained
as:

\j 2UEnm  24De_ 4pDete Zp.Dere [(m—y)z—ll 1+J1 ) zétDe | ch.zﬂcgzl‘?nm.lzﬁz

262 1262 its | W 4 4 4282 528 n%s  #2s?

Qnm(2) = Rz (1-2) .Fi(a, b, c; z)
(39)

wherea = +0+ ./ eum +P1, b =8+ 0 —Jeum + 1, ¢ =1+ 2 and X,, is the normalization constant.

Magnetic Properties of TiH Diatomic Molecule

It is well known that the partition function of a system can be used to obtain all thermodynamic and magnetic properties
(Edet et al, 2022). Easy summation over all vibrational energy levels available to the system can be used to calculate
the vibrational partition function. Given the energy spectrum in Eq. (37), the partition function Z(B) of the titanium
hydride with Modified Kratzer potential Energy-Dependent Screened Coulomb potential at finite temperature, T, is
obtained with the Boltzmann factor as;

Z(B) = z“maxz ~BEn (40)

where B= kB is the Boltzmann’s constant. To calculate the summation in the partition function, the energy
k T’

eigenvalues in Eq. (39) can be rewritten in the compact form;

_ h?a? (Ry—(n+v)? 2
Ban =P =5 () @0
where
P, = D, — 2D,87, + D812 +—[(m n? -1 (42)
_ zuc ZuCgEnm A2B2  4uDer, _ ZuDEre 2 1
Ry =2 4 2Epmm o 4 e - [m-»2-3] (43)
_ 1 AZB ZuDere 2 2mAB | A2B¢
v=gt \/h262 + +On—y)* - t en (44)
dn=0"
nfP (45)
To evaluate the integral in Eq. (40), we write the integral as follows:
Q
Z(B) = fnmaxf ﬁ(Pz(TH'V) +(n+u)+R2) (46)
or explicitly
Q
26) = e L) )
h2a? n2a?R? h2a?R, .. . ..
where we have defined; p=n+v,P, = o Q= v R, = v P; and the limits of integral is given as: v <

P = Npax
Evaluating Eq. (47), the partition function of the titanium hydride with modified Kratzer potential plus Energy-
Dependent screened Coulomb potential in the presence of magnetic and AB-flux fields is obtain as follows using
Mathematica 9.0 Software;
e 2V QBV-BP2HBRom (Erf[5,)+ 43 Er f[5,)+ Erf|55]-43Erf|E4))
Z(B) = - =
4/-BP,
where we have used the following notations for mathematical simplicity and convenience

8 =L v [=BP,, 5, = L v [fPy, By = X — v [ZfP, — n[—fP, By = L+ v [P, +
ny/—BPand 4; = eV ~QBV=FEP2 (49)

where Erf denotes the error function which can be defined as

(43)
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Erf(z) = Viﬁ J7 et dt (50)

The partition function in Eq. (40) can be used to obtain
magnetic properties of the Modified Kratzer potential
plus Energy-Dependent Screened Coulomb potential in
the presence of the magnetic and AB-flux fields, such as
the magnetization (M), magnetic susceptibility (x,,), and
persistent current (/). The following expressions can be

used to calculate the system’s magnetic properties (Edet
et al, 2022):

1 1 a
M(B) ZE(Tb’)) (ﬁz(ﬁ)> (51)
A (B) = B8 (52)
and
e OF(B)
IB) ===~ (53)
RESULTS AND DISCUSSION

The obtained energy eigenvalues results are discussed
graphically in this section, focusing on the magnetic
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properties of the titanium hydride diatomic molecule. For
all calculations, the molecular and physical parameters
are chosen as

D, =205¢eV, 1, = 1.781A, §=132408A ", u=
0.987371 a.m.u = 931.494028 MeVc 2, hc =
1973.269 eVA Oyewumi et al., 2014).

Magnetic Properties Versus Inverse Temperature
Figure 1 illustrates the variation of the partition function
with inverse temperature for slope parameter values g =
—1,0,+1. Each curve starts from a distinct value in the
negative domain and increases monotonically with
increasing inverse temperature. At higher inverse
temperature values, all curves exhibit convergent
behavior toward a common value. The curve
corresponding to § = —1 lies above those for § = Oand
g = +1, with the separation between the curves gradually
narrowing as convergence occurs.

-
_ - ’,:-—a -
—240 - -
.- .27
- - -
- -~
— - < o,
3_—250 e . P
=~ -~ _ - . r's — ﬁ:—l
-2600 - s - §=0
- ' -
7’ - g=1
7’
-270f »
0.000 0.002 0.004 0.006 0.008 0.010
BK™)

Figure 1: Partition function as a function of inverse temperature
B (K ~Y)varying with Energy slope parameter §

Figure 2 below shows the variation of magnetization with
inverse  temperature. Magnetization  decreases
monotonically with increasing inverse temperature for all
slope parameter values, remaining entirely in the positive
domain. The curve for § = —1lies innermost, followed by

g =0, and then § = +1. The nearly constant spacing
between the curves indicates uniform relative behavior
across slope values.

2003

M(p)

| ~
]0j W ~

BE™)
Figure 2: Magnetization as a function of inverse temperature
B (K ~1)varying with Energy slope parameter §
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Figure 3 below presents the magnetic susceptibility as a
function of inverse temperature. All curves lie in the
negative  susceptibility = domain and  increase
monotonically with increasing inverse temperature,
approaching a common convergence point. The curve for

Ishaya et al.,
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g = —1 is outermost, followed by § =0 and § = +1.
Although initially distinct, the spacing between the curves
decreases at higher inverse temperatures.

-2 _ __--—-__:_—__-—-—
- "'—-"
. T~
) T
-~ -
-4 _ e
., -
= e
=, Ve
- 77, ae1
=~ —6 - g=-
B , /// -
/, %—
-8 /,I — g:l
/7
—_10-f. R - R
2.0 25 3.0 35 4.0 4.5 5.0
BK)

Figure 3: Magnetic Susceptibility as a function of inverse
temperature (K ~1)varying with Energy slope parameter g

Figure 4 below depicts the variation of persistent current
with inverse temperature. Persistent current decreases
monotonically with increasing inverse temperature and
remains in the positive domain. The curve for § = —1has

the lowest magnitude, g§ = Olies intermediate, and g =
+1 produces the highest persistent current values.

20y
M
W

15 \\\

1(p)

10

st TS
I
-
—

|
st
1

]

=

BE™

Figure 4: Persistent current as a function of inverse
temperature (K ~1)varying with Energy slope parameter g

Magnetic Properties Versus Magnetic Field

Figure 5 shows the partition function as a function of
magnetic field for the three slope parameter values. All
curves begin with saturation at zero and undergo a sharp
drop around magnetic field values of approximately

0.0008-0.0009 T. Beyond this region, the curves diverge
slightly while maintaining consistent relative positions.
The outermost curve corresponds to § = —1, followed by
g = 0, with § = +1innermost.
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—1x10%®
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—4x10® -
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[ —]

—5%x10%
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Figure 5: Partition function as a function of AB-flux field

&(T)varying with Energy slope parameter g

0

Figure 6 below illustrates the variation of magnetization diverging more strongly. The curves for § = Oand § =
with magnetic field. Magnetization increases with +1remain closely spaced, with § = +1producing the
increasing magnetic field and remains positive for all highest magnetization values.

slope values. The curve for § = —1crosses that of § = Oat

very low magnetic fields (B < 0.0002T) before

-~
10000 P
-~ -~
- g=-1 -
9000 " -
- g=0 - _ -
-
8000 - =1 P _ -
= - -
— 7000 _ - _ -
6000 P -~
-~ - -
5000 . - 7 ==
- — = -
4000(» = ~—
0.0000  0.00002 0.00004 0.00006 0.00008  0.0001
B(T)

Figure 6: Magnetization as a function of magnetic field B(T)varying
with Energy slope parameter g

Figure 7 below presents magnetic susceptibility as a increase. The § = Ocurve increases smoothly, while § =
function of magnetic field. All curves lie in the positive +1rises more rapidly toward early saturation.

domain. The g = —1 curve exhibits non-monotonic

behavior, showing an initial decrease followed by an

6x107 - = -
- - - =
-— - - -
SX107| e = = T
= 4x107 _—
— - e=
- o=()
3x107 &
- 3=1
-
2x107 - - -

0.0000  0.00002 0.00004 0.00006 0.00008 0.0001
B(T)
Figure 7: Magnetic Susceptibility as a function of magnetic field
B(T)varying with Energy slope parameter g
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Figure 8 below shows the persistent current versus after crossing the § = Ocurve at low magnetic field
magnetic field. The curves diverge increasingly with values.

magnetic field strength. The curve for g = +1is

uppermost, followed by § = 0, while § = —1lies lowest

-~
10000 -
- g=-1 .7
9000 M -
- g:o - _ -
-~
8000 — =1 _ -
g
= 7000 - .-
- -
6000 P _ -
- - — - -
50000 < Pl -
- -— - -
4000[> = ~
0.0000  0.00002 0.00004 0.00006 0.00008  0.0001
B(T)

Figure 8: Persistent current as a function of magnetic field
B(T)varying with Energy slope parameter g

Magnetic Properties Versus Aharonov—Bohm Flux After this drop, the curve for § = —1lies outermost,

Field followed by § =0 and § = +1. The spacing between
Figure 9 displays the partition function as a function of curves remains nearly constant thereafter.
the AB-flux field. All curves initially saturate at zero and

then experience a sharp decline around 0.008-0.009 T.

<
A
30 vy
—-1x10 \ 1
\
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Figure 9: Partition function as a function of AB-flux field

&(T)varying with Energy slope parameter g

Figure 10 below shows the magnetization versus AB-flux ~ After the minima, the curve for § = —1is uppermost,
field. All curves exhibit an initial sharp drop to a followed by § = 0, with § = +1 lowest.

minimum at AB-flux values below 0.002 T, followed by

a rapid increase and eventual saturation near 4750 units.
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Figure 10: Magnetization as a function of AB-flux field & (T)varying
with Energy slope parameter g

Figure 11 belwo presents the magnetic susceptibility In contrast, § = +1exhibits a large negative susceptibility
versus AB-flux field. All curves lie in the negative at low flux values, followed by a rapid increase and
domain. The susceptibility for § = —1remains constantat eventual convergence with the other curves.

zero, while § = Oshows a nearly flat negative response.
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Figure 11: Magnetic Susceptibility as a function of AB-flux field
&(T)varying with Energy slope parameter g

Figure 12 below depicts the persistent current versus AB-  The persistent current is highest for § = —1, intermediate
flux field. All curves show a sharp rise around 0.01 T, for g = 0, and lowest for § = +1.
followed by saturation and convergence near 5150 units.
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Figure 12: Persistent current as a function of AB-flux field
&(T)varying with Energy slope parameter g
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CONCLUSION

In this work, the magnetic properties of the titanium
hydride diatomic molecule have been investigated using
the modified Kratzer energy-dependent screened
Coulomb potential in the presence of external magnetic
and Aharonov—Bohm flux fields. Closed-form solutions
of the Schrodinger equation were obtained via the
Nikiforov—Uvarov Functional Analysis method and used
to evaluate thermodynamic and magnetic quantities. The
results show that the slope parameter plays a decisive role
in determining the strength, ordering, and convergence
behavior of the partition function, magnetization,
magnetic susceptibility, and persistent current. Negative
slope values enhance magnetic responses, while positive
values suppress them. External magnetic fields induce
divergence and saturation effects, whereas AB-flux fields
produce sharp transitions, minima, and convergence
phenomena. Overall, the combined influence of the slope
parameter and external fields provides an effective
mechanism for tuning the magnetic behavior of the TiH
diatomic molecule, with potential relevance to molecular
magnetism, spectroscopy, and field-controlled quantum
systems.
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