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Energy Values of Titanium Hydride (TiH) Diatomic Molecule with Modified Kratzer
Energy-Dependent Screened Coulomb Potential in the Presence of Magnetic and
Aharonov-Bohm Flux Fields
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ABSTRACT

In this study, the modified Kratzer energy-dependent screened Coulomb potential
is analyzed in the presence of external magnetic and Aharonov—Bohm (AB) flux
fields. The Schrodinger equation is solved using the Nikiforov—Uvarov Functional
Analysis (NUFA) method, yielding closed-form expressions for the energy
eigenvalues and the corresponding wavefunctions. The resulting solutions are
applied to the Titanium Hydride (TiH) diatomic molecule to investigate how
external fields and the slope parameter § which characterizes the rate at which the
screening strength and potential shape vary with internuclear separation affect the
molecular energy spectrum. The slope parameter plays a key role in determining
the stiffness and depth of the effective potential: negative values (g < 0) enhance
attractive behavior and support both positive and negative bound-state energies;
zero slope (g = 0) produces only positive bound-state levels; and positive slope
(8 > 0) alters the spacing of the spectrum by increasing the sensitivity of the
energy levels to external-field perturbations. Numerical results show that external
fields strongly influence degeneracy patterns in TiH. Magnetic fields remove
degeneracy across m = +1, AB-flux fields create quasi-degeneracy, and the
combined fields produce the most significant degeneracy lifting. Energy values
consistently decrease with increasing vibrational quantum number n. Special
cases obtained by varying the magnetic quantum number and slope parameter
reduce to the known modified Kratzer—Coulomb potential, and the resulting
spectra agree well with available literature. These findings highlight the sensitivity
of TiH molecular states to the slope parameter and external fields.
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INTRODUCTION

In quantum mechanics, solving the Schroedinger
equation is critical for understanding the energy spectrum
and other properties of quantum systems (Flugge, 1971).
The solutions to this equation provide energy eigenvalues
and eigenfunctions, which are essential for understanding
the quantum states of particles or systems. These
solutions are used in a range of applications, from
determining energy levels in atoms and molecules to
investigating mass spectra in quarkonia systems (Ibekwe
et al., 2021), thermodynamic properties of quantum
systems (Jia, Zhang & Wang, 2017), and even quantum
information theory (Ikot et al., 2020). A wealth of
research has been devoted to obtaining analytical
solutions of the SE for various potential models. Among
the most studied potentials are the Deng—Fan potential

(Edet et al., 2022), the Improved Ultra-Generalized
Exponential Hyperbolic Potential (Ikot et al., 2021), the
Inverse Quadratic Yukawa potential (Horchani et al.,
2021), and the Modified Kratzer potential (Onyenegecha
et al., 2021), to name just a few. The energy eigenvalues
and wavefunctions associated with these potentials are of
paramount importance for understanding the physical
properties of quantum systems, such as their bound
states, transitions, and spectrum.

To solve the SE for these potentials, various
mathematical techniques have been employed. These
include the Nikiforov-Uvarov (NU) method (Nikiforov
& Uvarov, 1988), the Nikiforov-Uvarov-Functional
Analysis (NUFA) method (Ikot et al., 2021), the
Extended Nikiforov-Uvarov (ENU) method (Karayer,
Demirha & Buyukkilic, 2015), and the parametric NU
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method (Tezcan & Sever, 2009), among others. Other
techniques, such as the formula method (Falaye, Ikhdair
& Hamzavi, 2015) and the Proper Quantization Rule
(PQR) method (Serrano, Gu & Dong, 2010), have also
been used to extract the energy eigenvalues and
eigenfunctions. These methods are essential for solving
the SE in situations where analytical solutions are
difficult to obtain, particularly in systems with complex
potential profiles.

In recent years, a considerable body of work has emerged
in the literature focusing on the effects of magnetic fields
and Aharonov-Bohm (AB) flux fields on various
quantum systems. These studies employ a wide range of
analytical techniques and potential models to explore
their impact. For example, using the asymptotic iteration
method, (Aygun, Bayrak, Boztosun & Sahin, 2012)
derived the energy eigenvalues of the Kratzer potential,
both with and without the influence of a constant
magnetic field, within the context of the 2D Schrddinger
wave equation. Eshghi & Mehraban (2017) examined the
behavior of a particle confined by both magnetic and AB
flux fields under a radial scalar power potential.
Additionally, Ikhdair, Hamzavi & Sever (2012) as well
as Ikhdair & Hamzavi (2012) studied 2D harmonic and
pseudo-harmonic oscillators in the presence of external
fields, calculating the energy spectrum and wave
functions for electrons in these systems. Similarly,
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Khordad (2010) & Cetin (2008) explored eigensolutions
for a charged particle confined by a harmonic oscillator
in the presence of both a strong magnetic field and an AB
flux field, investigating various spectral properties.
Ferkous & Bounames (2013) solved the 2D Pauli
equation with the Hulthen potential for a spin-1/2 particle
under the influence of an AB flux field, while Ferkous,
Boultif & Sifour (2019) derived bound-state energy
eigenvalues for a spin-1/2 particle subjected to the
modified Poschl-Teller potential in the presence of an AB
field, further exploring the interaction between spin and
magnetic flux. Nevertheless, despite the breadth of
existing studies, our review indicates that the modified
Kratzer energy-dependent screened Coulomb potential
has not yet been investigated in the presence of external
magnetic and Aharonov—Bohm (AB) flux fields to study
the energy values of the titanium hydride. Addressing this
gap constitutes the central objective of the present work.
The modified Kratzer energy-dependent screened
Coulomb potential is expressed as:

2
V(r, Enm) = De (Z22) = £(1 + gEpmde™™ (1)
where D, is the dissociation energy, 7, is the equilibrium
internuclear separation, C is the depth of the potential, §
is the screening parameter, and g is the slope parameter
and can be adjusted as desired.

In this section, we briefly introduce the Nikiforov-Uvarov Functional Analysis (NUFA) method (Ikot et. al, 2021).
This method is useful in solving second-order differential wave equations of the hypergeometric-type (Ikot et. al.,
2021):
d?yp(s) | (s) dyp(s) , () _

ds? a(s) ds + Jz(s)lp(s) =0 @
where g (s) and 6(s) are polynomials of at most second degree, and 7(s), is a first degree polynomial. Tezcan & Sever
(2008), latter introduced the parametric form of NU method in the form
d?(s) ay—-azs dip(s) 1 2 _ _

ds? 5(1—0{35) ds 52(1_a3s)2 [ fls + 625 63]11)(5) - 0 (3)
where a; and &;(i = 1,2,3) are all parameters. It can be observed in Eq. (3) that the differential equation has two
singularities at s = 0 and s — 1, thus it takes the wave function in the form
W(s) = s*(1 = s)f(s) “4)
Substituting Eq. (4) into Eq. (3) leads to the following equation

2 2
s(l—ags)d f(s)+[01+2/1—(2/1a3+2va3+a2)s]df(s)—a3</1+v+%(%—1)+ l(2—1) +%)(/1+
3

ds? ds 3 4 \a 3

§1
1/(a; 1(ay 2 g AA-1D+ag1—&5 v(v—l)a3+azv—a1a3v—a—3+fz—530_'3 _
U+E(a—3—1)— Z(a_3_1) +a_§>+[ 5 + (-azs) f(S)—O (5)
Eq. (5) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanish
M- +aA—&=0 (6)
v(v—Das +a2v—ala3v—i—1+§2 —&az; =0 (7
3

Thus, Eq. (§) now becomes

d?f(s) df(s) 1(a; 1(a; 2 g
as? s —“3<l+”+;(a—3—1)+ (2-1) +a—g>x

(“”*i(fi—i—l)—\/i(Z—j—l)2+§—§)f(s)=0 ®)
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Solving Egs. (6) and (7) completely give

= (A -a) £ /A=) +45) ©)

v= ((0-'3 +aaz —ay) £ \/(a3 + a3 —az)? + 4‘( + azés — fz)) (10)
Eq. (8) is the hypergeometric equation type of the form
x(1—x)ddff") +le+ (@+b+Dx]1 L2 — [ab]f(x) = 0 (11)

where a, b, and ¢ are given as follows

a=\/_<l+v+ (2-1)+ F(z-1) j;) (12)

3

b=\/a—3</1+v+%(Z—z—1)— e +j;) (13)

c=a;+ 21 (14)
Setting either aor b equal to a negative integer—n, the hypergeometric function f(s) turns to a polynomial of degree
n. Hence, the hypergeometric function f(s) approaches finite in the following quantum condition i.e. @ = —n, where

n=20123,..... Nonax
Using the above quantum condition,

V@ (1w (o) B0+ 5) = o (1s)

_ - _ (e _ f_l
A+v+2 (— 1) Ja_g_ 4(a3 1) + (16)
Squaring both sides of Eq. (16) and rearranglng, one obtains the energy equation for the NUFA method as
2 2
2 (e _ L ) (e _5_
p: +2/1(v+2(a3 )+Ja_3>+(v+ (a3 1)+Ja_3) 4(a3 1) 5= (17)

By substituting Eqs. (9) and (10) into Eq. (4), one obtains the corresponding wave equation for the NUFA method as:

SN rocrors (ag+araz- 062)+J(a3+a1‘13 a)2+4($l4azés—¢2)
Y(s) = Ns 2 (1 - ass) 2a3 oFi(a, b, c;s) (18)
where N is the normalization constant.
Only the positive sign is used above because it ensures a normalizable, physically acceptable wavefunction and
produces discrete bound-state energies, while the negative sign leads to divergent or non-physical solutions.

Solution of the 2D Schrodinger Equation TiH Diatomic Molecule with Magnetic and AB-flux Fields
A generalized form of the Schrodinger Equation (SE) for a charged particle moving under the influence of the vector
potential A is written as (Purohit et al., 2020; Rampho ef al., 2020; Ikot et al., 2020):

R N2
(in7 +24) w(r,¢) = 2u[Ey = VO IY(r, §) (19)
where e and p are the charge of the particle and reduced mass of the system respectively, E,,, is the energy
eigenvalues, cis the velocity of light, A is the vector potential and V (r) scalar potential. To indicate the magnetic field
and AB-flux field together, we express the vector potential A as a sum of two terms 4 = ffl + ffzhaving azimuthal
components as (Purohit et al., 2020; Rampho et al., 2020; Ikot et al., 2020; 2021):

A =2 Gandd, =285 (20)

2nr

where B is the applied external magnetic field with V x 21 =B , /Tzrepresents the additional magnetic flux @5 = &
created by a solenoid with 7. ATZ = (. Then the vector potential A can be written as:

> BeO | £ 2

A=(=5+3,) @ @n

2nr
where ¢ is the direction of magnetic flux around the solenoid. Also, we assume a wavefunction in the cylindrical

coordinates to be of the form:

1.
W, @) = (2nr) 2e™P 0y, (1) (22)
where m is the magnetic quantum number.
Substituting Eq. (1) into Eq. (19), we have
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I >\ 2 -re\2 ¢ - _
(07 +24) 9, 9) = 20| Bum = D (522)” + £+ gEum)e ™| 00 8) (23)
For convenience, let us introduce A = f so that Eq. (23) becomes

2 ~
(ih7 + AR) (1, 8) = 2 By — D, + 22676 — € 4. £ g7 4 C08nm om0y, ) (24)
Using Egs. (21) and (22) into Eq. (24) we get the 2™ order differential equation (DE) given as follows:
2u 2DeTe Dere2 _ CgEnm _ m?2

, 5 (B — D + 2082 = 258 4 Somor 4 Simemor) 4 L

Qi (r) + omABe-5" mlf 12F2e—267 AZBfe_‘sr a2g2 Dpm () =0 (25)

a(1-e=")r * hmr2 - hz(l_e—c?r)z - h2(1-e=9")mr T anZn?r?
Equation (25) is a complicated differential equation that cannot be solved easily due to the presence of centrifugal =

. 1 . . . .
as well as the reciprocal ~ terms. Therefore, to bypass these terms we introduce the Greene-Aldrich approximation

scheme (Greene & Aldrich, 1976). These approximations are given by:
1 82 1 )

Using the approximation terms of Egs. (26) into Eq. (25) we have:
2uEnm 24D 4u8Dere  2p8%Deré
n2 h2 h2(1-e9T) hz(l_e—ar)z
2u8C _&r | 2USCHEnm _&r 2méAB _gy
ta-e® e hie-o)?
n j—
(1) + __ WB asr _ _ ASBE o Qnm (r) =0 27
hz(l—e—5r)2 hzn(l—e‘5T)2
_[onen—t
(1—e=57)? 1
where we have defined the following parameters as ¢, = % and y = ¢i
0

Now introducing the NUFA method of Eq. (3) into Eq. (27) with the following coordinate transformation z = e~

Equation (27) becomes
2UEnm  2pDe 4pUDeTe 2uDerg

h262 h262  h28(1-z) h2(1-2)2
2uc 2UCGE 2mAB
U + HCGEnm +

d20pm(r) 1dpm(r)

dz? 2 az T2 Yoo T wzsan 2 T a2 [Qam() =0 (28)
R, g |men2]
h282(1-2)2 h2né(1-z)2 (1-2)2
To make Eq. (28) solvable with NUFA method, let’s introduce the following dimensionless parameters
2UE, 2uD, 4uD,r, z,uD ré 2uc 2uagE, 2mAB A2B2
—&nwm = hzgzm'Q1:_h25§:Q2: hzze'Qs >, Q4 = w25’ Qs = hz&nm Q¢ = 'Q7__Wr
22 Bs 1
Qo =1, Q= = [(m—1)? =] (29)
Q2 Q3 Q42 Qsz
@0y (r) | 1d%mm() | 1 “Em T Gt z>+(1—z>2 tanta 0, () =0 30
dz? z dz z2 QZ | Q2* 4 %7 @ nm ') = (30)
(1-2)2 * (1-2)> * (1-2)? = (1-2)°
and for mathematical simplicity and convenience Eq. (30) becomes:
APnm () | (1-2) dQpm(r) 1
d’;’; Z(l_zz) 1;7;1 + 22(1-2)2 [_(Enm + pl)Zz + (Zgnm + Pz)Z - (Enm + p3)]Qnm(r) =0 (31)
Where
P1=—01+0Q,+0Q5—-0Qy, p2=-201—-0Q;+Q,+0Q0s+Q+0Qgps=—0;1 =02 —Q3—0Q (32)
And
ay=ay=0a3=1, & =&y + D1, &2 = 26um + P2, $3 = Enm T P3 (33)

By comparing Eq. (31) with the NUFA method of Eq. (3), then we obtain the following (Ikot ez al., 2021):

A= em + D3 (34

And

V=%+ /%"'51_524'53 (3%)
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Substituting Egs. (33), (34) and (35) into Eq. (17), we get the energy eigenvalues as:
_ [pi—p3—(n+v)? 2
Enm + D3 = [W (36)
Substituting Eqgs. (29) and (32) into Eq. (36), we get
2UC | 2uCGEnm , A*B?  4uDere 2uDer’ 2 1 2 2
h28? 1282 525t w25 tTrtezt a2 7~ |(m-y)*—2|-(n+v)

Enm = De = 2Do81, + D012 + 5 (m — y)? — §| - - [FE— i [ ] (37)
Where

_1 A2B2  2uD,r? N2 2miaB | 72B¢
A= 2 T \/h262 Tt Tt (m—y) s T wzon (38)

Equation (37) is an implicit self-consistent equation for the bound-state energy E,,,, as it appears on both sides. It is
solved numerically using an iterative procedure, starting from an initial guess and updating until convergence is
achieved within a specified tolerance. Some optional methods of solution includes fixed-point iteration, Newton—
Raphson, or solve.

Substituting Eqgs. (29), (32) and (33) into Eq. (18), the corresponding Energy eigenfunction equation can be obtained

NIGERIAN JOURNAL OF PHYSICS

as:

2UEnm , 2uDe_4uDere  2UDeT? [(m—y)2-
+ + +
w252 p?82  %s 2 4

Dy (2) = anz‘/

Where

a=B+0+ eum+ 11
b=f+0— exm+p:
c=1+2p

and X,,, is the normalization constant

RESULTS AND DISCUSSION

The obtained numerical results of this study are discussed
in this section. To do all the following calculations, the
parameters are taken as follows: D, = 2.05eV,r, =
1.781 4,6 = 1.32408 A~!, p = 0.987371 a.m.u,

hc = 1973.269 eVA and lamu=
931.494028 MeVc™? (Oyewumi et al., 2014). The
numerical results are presented in Tables 1, 2, and 3 for
three different cases. Case 1: Slope parameter § = —1.
For this case, both positive and negative energy values
occur for all quantum states. A clear trend of decreasing
energy with increasing n is observed across all
configurations and magnetic quantum numbers. When
both the magnetic and AB-flux fields are set to zero, the
system exhibits degeneracy across m = +1. When a
magnetic field is applied while the AB-flux field remains
zero, this degeneracy is lifted, and separate energy levels

1, [1,2uDe 2uC 2uCGEnm  A2B2

2 T2 25T 2 T2
x(l—z)zj““z” "o Fi(a,b,c;2)

(39)

(40)
(41)
(42)

appear for each value of m. Both positive and negative
energy levels shift downward. When the magnetic field
is removed, but a non-zero AB-flux is present, quasi-
degeneracy appears as a partial overlap in the energies of
m = +1. In this case, the energy values also decrease
compared to the field-free case. When both magnetic and
AB-flux fields are non-zero, the strongest degeneracy
lifting occurs. This configuration results in the lowest
positive energy values and the most negative energy
values among the four cases, indicating that the combined
fields have a stronger perturbative effect than either field
alone. Case 2: Slope parameter § = 0. In this table, only
positive energy values are obtained for all field
configurations and quantum states. For each value of m,
energy decreases with increasing n, maintaining a
consistent trend. Compared to Table 1 (§ = —1), the
energy spectrum is shifted upward.
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Table 1: Numerical Eigenvalues of the Modified Kratzer Energy-Dependent Screened Coulomb Potential (MKEDSCP) for TiH Diatomic Molecule with
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various nand mQuantum States for Energy Coefficient § = —1with the impact of magnetic B field and AB-flux field ?

Eym(eV)

TiH

g=-1

m

n

E.n(B=§=0)

E,n(B =0.001,§ =0)

E.n(B=0,¢=0.001)

E,n(B=§=0.001)

W - O W = O

W= O

0.5726200299, —15.27371997
0.5288093857, —15.78517790
0.4839029615, —16.30537954
0.4379112255, -16.83433535

0.5722747938, —15.26560772
0.5284604579, —15.77697320
0.4835506997, —16.29708274
0.4375559780, —16.82594681

0.5726200299, —15.27371997
0.5288093857, —15.78517790
0.4839029615, —16.30537954
0.4379112255, —16.83433535

2.432351424, -46.52985936
2.344753331, —47.71546815
2.255383526, —48.90914474
2.164287178,-50.11093421

2.507451526, —45.46303645
2421517363, —46.64144075
2.333766820, —47.82786820
2.244248144, —49.02236698

2.585500478, —44.41461486
2.501218321, —45.58581740
2.415074437, —46.76499765
2.327120257, —47.95220711

0.5726207212, -15.27373621
0.5288100836, —15.78519432
0.4839036650, —16.30539614
0.4379119352, -16.83435213

0.5722747938, —15.26560772
0.5284604579, —15.77697320
0.4835506997, —16.29708274
0.4375559781, —16.82594682

0.5726193400, —15.27370375
0.5288086879, —15.78516150
0.4839022563, —16.30536295
0.4379105147, —16.83431858

0.3756109053, —71.90812628
0.2585360109, —73.26172860
0.1402175036, —74.62392680
0.02066907465, —75.99473456

0.4639818710, —70.85516157
0.3478976206, —72.20209169
0.2305582296, —73.55760615
0.1119779592, —74.92171921

0.5551377465, —69.82044022
0.4400254835, —71.16070582
0.3236468771, —72.50954456
0.2060167532, —73.86697128

Table 2: Numerical Eigenvalues of the Modified Kratzer Energy-Dependent Screened Coulomb Potential (MKEDSCP) for TiH Diatomic Molecule with

Various nand mQuantum States for Energy Coefficient g = Owith the Impact of Magnetic B Field and AB-flux Field ?

E,n(eV) TiH Gg=0

m n  E.(B=%=0) E,mn(B =0.001,% =0) E,n(B=0,=0.001) E,n(B=%=0.001)
0 1.320653216 3.217928668 1.320655361 0.5749703663
1 1.216561505 3.132291088 1.216563604 0.3978471323

-1 2 1.110582030 3.041271046 1.110584083 0.2168830982
3 1.002716953 2.944975098 1.002718963 0.03213034432
0 1.319581582 3.287034129 1.319581582 0.7072201400
1 1.215512008 3.206366054 1.215512009 0.5331404637

0 2 1.109554387 3.120215362 1.109554388 0.3551779056
3 1.001710905 3.028692387 1.001710904 0.1733859235
0 1.320653216 3.358238763 1.320651074 0.8426097547
1 1.216561505 3.282577986 1.216559406 0.6715662430

1 2 1.110582030 3.201332158 1.110579972 0.4965974162
3 1.002716953 3.114615500 1.002714938 0.3177581317
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Table 3: Numerical Eigenvalues of the Modified Kratzer Energy-Dependent Screened Coulomb Potential (MKEDSCP) for TiH Diatomic Molecule with
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Various nand mQuantum States for Energy Coefficient g = 1with the Impact of Magnetic B Field and AB-flux Field ?

Eym(eV)

TiH

g=1

m

n

E..(B=§=0)

E.n(B =0.001, =0)

E.n(B =0,&=0.001)

E,n(B =§=0.001)

W - O W = O

W= O

3.773706846, —2.317625174
3.755946592, —2.222435816
3.728502443, -2.116190499
3.690195987, —1.997710812

3.769913569, —2.317327002
3.752096223, —2.222092927
3.724587607, —2.115795517
3.686207301, —1.997254363

3.773706846, —2.317625174
3.755946592, —2.222435816
3.728502443, —2.116190499
3.690195987, —1.997710812

3.770716533, -30.01471170
3.752064496, —29.81851805
3.725065040, —29.61260493
3.689352746, —29.39660690

3.776897561, —30.18253957
3.765425939, —29.99476299
3.745912278, —29.79757229
3.718013948, —29.59062489

3.784326381, —30.34463637
3.779866720, -30.16510636
3.767655600, —29.97645283
3.747371393, —29.77835417

3.773714435, -2.317625775
3.755954296, —2.222436502
3.728510276,-2.116191285
3.690203968, —1.997711721

3.769913574, -2.317327000
3.752096228, —2.222092925
3.724587611, —2.115795515
3.686207305, —1.997254361

3.773699263, —2.317624579
3.755938896, —2.222435128
3.728494618, -2.116189704
3.690188014, —1.997709896

1.146192329, —23.56452380
0.8222438013, —23.03549754
0.4656187223, —22.47242266
0.07181908109, —21.87080115

1.372533159, —23.95243440
1.071298331, —23.44719037
0.7402339659, —22.91074475
0.3755523907, —22.33930985

—24.32773315
1.313184189, —23.84473118
1.005764069, —23.33299467
0.6677620971, —22.78930425

1.593241820,
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In the absence of both magnetic and AB-flux fields,
degeneracy is present across m = +1. When the
magnetic field is applied alone, degeneracy is lifted and
the highest energy values among all configurations are
obtained, with the level spacing widening as the magnetic
field strengthens. When the magnetic field is switched off
but a non-zero AB-flux field is applied, quasi-degeneracy
is observed at m = +1, and the standard decrease of
energy with increasing n persists. When both fields are
non-zero, degeneracy is fully lifted and this combination
yields the lowest energy values for this slope parameter.
Case 3: Slope parameter § = 1. The same overall patterns
observed for § = —1are also present in this table.
However, in this case, the positive energy values
decrease, while for the negative energy, the energy values
increase. This behavior reflects the influence of a positive
slope parameter, which modifies the curvature of the
effective potential and alters how sensitively the system
responds to the external perturbations. Figure 1 presents

Ishaya et al.,

NJP

the variation of the energy eigenvalues of the TiH
diatomic molecule as a function of the external magnetic
field B, in the absence of the Aharonov—Bohm (AB) flux
field and for an energy slope parameter g =1,
corresponding to a magnetic quantum number m = 1.
The curves represent the quantum states n = 0,1,2,3. A
consistent trend is observed across all states. The energy
eigenvalues increase sharply with increasing magnetic
field strength in the low-B regime. Beyond a certain
magnetic field threshold, the rate of increase diminishes
and the curves exhibit saturation behavior, becoming
asymptotic to an upper energy limit of approximately 3.8
eV. Among the quantum states, the ground state (n = 0)
consistently attains the highest energy at each magnetic
field value, followed in descending order by the excited
states (n = 1,2,3). This ordering is preserved throughout
the entire magnetic field range, with no level crossing
observed for any magnetic quantum number considered.

v T
(1] 0.002

0.010

lffn=0 n=1

n=3l

Figure 1: Variation of the Energy Eigenvalues of TiH Diatomic Molecule
under the Influence of the Magnetic field form = 1, § = land é’ =0

Figure 2 below illustrates the variation of the energy
eigenvalues as a function of the external magnetic field
B under the combined influence of a non-zero AB-flux
field and an energy slope parameter § = 1, corresponding
to m = 1. The curves again represent the quantum states
n = 0,1,2,3. In this configuration, all energy eigenvalues
exhibit a sharp decrease from their initial values at B =
0, reaching distinct minima around B =~ 0.001 T. The
ground state (n = 0) attains the highest minimum energy,
while the excited states (n = 1,2,3) display progressively

lower minima, preserving their relative ordering. Beyond
the minimum points, the energy eigenvalues increase
gradually and smoothly with increasing magnetic field
strength, accompanied by a growing separation between
adjacent energy levels. At higher magnetic field values,
the energy curves approach different saturation limits,
approximately 1.2 eV, 1.4 eV, and 1.6 eV for the ground
state, with corresponding but distinct saturation values
for higher excited states, depending on the quantum state
and magnetic quantum number.
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Figure 2: Variation of the Energy Eigenvalues of TiH Diatomic Molecule
under the Influence of the Magnetic field form = 1, § = 1land £ = 0.001

Figure 3 below depicts the variation of the energy
eigenvalues with respect to the Aharonov—Bohm flux
field in the absence of an external magnetic field, for an
energy slope parameter § = 1 and magnetic quantum
number m = 1. The quantum states n = 0,1,2,3 are
shown as the coloured plots on the figure. In this case, the
energy eigenvalues remain constant across the entire
range of AB-flux values considered. The energy levels
are clearly separated by a uniform positive spacing of

approximately 0.1 eV between adjacent quantum states.
The ground state (n = 0) consistently exhibits the
highest energy value (approximately 0.05 eV), while the
excited states show monotonically decreasing energies
with increasing n. The relative ordering of the energy
levels remains unchanged for all magnetic quantum
numbers.

-0.10
—oasd— . — . —

E_(e¥F) 70v30j

e

0.004

0.006 0.008

D, 5(T)

|——n=0*'* =1
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Figure 3: Variation of the Energy Eigenvalues of TiH Diatomic Molecule
under the Influence of the AB-flux field form = 1, § = land BE=0

Figure 4 below shows the behavior of the energy
eigenvalues as a function of the Aharonov—Bohm flux
field in the presence of a non-zero magnetic field, with
an energy slope parameter § = 1 and magnetic quantum
number m = 1. For all quantum states, the energy
eigenvalues decrease monotonically as the AB-flux field
increases. The energy values initially start slightly above

zero and rapidly transition into the negative energy
domain as the AB-flux increases.

The spacing between adjacent energy levels becomes
very small, giving rise to an almost degenerate spectrum,
although the ground state (n = 0) consistently remains
the uppermost curve. The overall shape and ordering of
the energy levels are preserved across the entire AB-flux
range, with no level crossing or inversion observed.
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Figure 4: Variation of the Energy Eigenvalues of TiH Diatomic Molecule
under the Influence of the AB-flux field form = 1, § = land B = 0.001
Singe the .result in Eq. (3.9) is new and fchere iS no Ey; = D, — 2D,67, + D,621% + W82e(+1) K82
available literature with which to compare this study, we 2 22“ 5
rather investigate the Special cases obtained by varying %_Zﬂf_ﬁ_[([ﬂ){ﬁﬁ %J,%zeréw(fﬂ))
the magnetic quantum number and slope parameter (43)

reduce to the

available literature. By setting m = £ +% and § =0 in

Eq. (39), turns to be in the form:

known modified Kratzer—Coulomb
potential, and the resulting spectra agree well with

1 1 ZuDgrg
2<n+2+ 4+—,72 +0(0+1)

Equation (43) is consistent with the one obtained in Eq.

(23) of (Edet et al., 2020). The numerical energy values

of Eq. (43) are presented in tables 4 and 5 below:

Table 4: Comparison of the Numerical Eigenvalues (in eV) of Modified Kratzer Screened Coulomb Potential
for Different Values of n and £ for Different Diatomic Molecules

n € N2 [NUJ] N2 [NUFA] CO [NU] CO [NUFA]
Edet et al., (2020) (Present) Edet et al., (2020) (Present)
0 0 9.474983971 9.474994070 8.541820250 8.541831363
0 9.474953820 9.474964931 8.541790206 8.541711317
1 1 9.474959637 9.474959748 8.541796145 8.541796145
0 9.474923928 9.474934939 8.541760426 8.541771537
1 2 9.474929746 9.474939757 8.541766365 8.541777476
2 9.474941385 9.474952396 8.541778244 8.541789355
0 9.474894291 9.474895392 8.541730906 8.541741917
1 9.474900111 9.474911222 8.541736847 8.541747958
2 3 9.474911752 9.474922863 8.541748729 8.541759839
3 9.474929214 9.474939325 8.541766552 8.541777663
0 9.474864907 9.474875918 8.541701644 8.541712755
1 9.474870728 9.474881839 8.541707586 8.541718697
2 4 9.474882372 9.474893483 8.541719470 8.541729581
3 9.474899837 9.474899848 8.541737298 8.541738399
4 9.474923125 9.474934236 8.541761068 8.541762179
0 9.474835771 9.474846882 8.541672636 8.541783747
1 9.474841594 9.474852695 8.541678579 8.541789689
2 9.474853240 9.474864351 8.541690466 8.541791577
3 5 9.474870708 9.474871819 8.541708297 8.541819398
4 9.474894001 9.474885112 8.541732072 8.541843183
5 9.474923116 9.474934227 8.541761790 8.541872891
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Table 5: Comparison of the Numerical Eigenvalues (in eV) of Modified Kratzer Screened Coulomb Potential
for Different Values of n and £ for Different Diatomic Molecules

NIGERIAN JOURNAL OF PHYSICS

n £ NO|[NU] NO [NUFA] CH [NU] CH [NUFA]
Edet et al., (2020) (Present) Edet et al., (2020) (Present)
0 0  6.303864689 6.303875790 3.124280611 3.124291722
0 6.303836703 6.303847814 3.124022422 3.124033533
1 1 6.303842142 6.303853253 3.124061521 3.124072632
0 6.303808986 6.303819107 3.123774225 3.123785336
1 2 6.303814426 6.303825537 3.123813539 3.123824640
2 6.303825311 6.303836422 3.123892189 3.123893299
0 6.303781534 6.303792645 3.123535425 3.123548536
1 3 6.303786975 6.303797906 3.123574942 3.123585953
2 6.303797863 6.303798974 3.123653997 3.123644998
3 6.303835965 6.303846976 3.123772630 3.123783741
0 6.303754342 6.303765453 3.123305474 3.123317586
1 6.303759786 6.303769897 3.123345183 3.123356294
2 4 6303770676 6.303781787 3.123424620 3.123435731
3 6.303787009 6.303798110 3.123543823 3.123554934
4 6.303808788 6.303819899 3.123702849 3.123713951
0 6.303727408 6.303738519 3.123083866 3.123194977
1 6.303732853 6.303743964 3.123123755 3.123134866
2 6.303743746 6.303754857 3.123203553 3.123214664
3 5 6.303760084 6.303771195 3.123323296 3.123334397
4 6.303781868 6.303783980 3.123483035 3.123494146
5 6.303809097 6.303810018 3.123682842 3.123593953
CONCLUSION implications for molecular control, spectroscopy and

This study has examined the influence of magnetic and
Aharonov—Bohm flux fields on the Titanium Hydride
(TiH) diatomic molecule using the modified Kratzer
energy-dependent screened Coulomb potential. By
applying the NUFA method, closed-form energy
expressions were obtained and numerically evaluated for
various values of the slope parameter g. The results
reveal that the slope parameter plays a central role in
shaping the molecular energy spectrum. Negative slope
values (g < 0) allow both positive and negative bound-
state energies, zero slope yields only positive states,
while positive slope values (§ > 0) influence the spacing
and symmetry of the energy levels. External fields
significantly modify degeneracy patterns in TiH.
Magnetic fields remove degeneracy across m = +1, AB-
flux fields induce quasi-degeneracy, and the combined
fields cause the strongest degeneracy lifting and the
largest downward shift in energy. Across all cases,
energy levels decrease with increasing vibrational
quantum number n, and the special cases considered
reduce smoothly to the known modified Kratzer—
Coulomb solutions, confirming the accuracy of the
model. Overall, the study demonstrates that both the
slope parameter and external fields are powerful tools for
tuning molecular energy spectra, with important

field-dependent molecular dynamics.
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