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ABSTRACT 

In this study, the modified Kratzer energy-dependent screened Coulomb potential 

is analyzed in the presence of external magnetic and Aharonov–Bohm (AB) flux 

fields. The Schrödinger equation is solved using the Nikiforov–Uvarov Functional 

Analysis (NUFA) method, yielding closed-form expressions for the energy 

eigenvalues and the corresponding wavefunctions. The resulting solutions are 

applied to the Titanium Hydride (TiH) diatomic molecule to investigate how 

external fields and the slope parameter g̃ which characterizes the rate at which the 

screening strength and potential shape vary with internuclear separation affect the 

molecular energy spectrum. The slope parameter plays a key role in determining 

the stiffness and depth of the effective potential: negative values (g̃ < 0) enhance 

attractive behavior and support both positive and negative bound-state energies; 

zero slope (g̃ = 0) produces only positive bound-state levels; and positive slope 

(g̃ > 0) alters the spacing of the spectrum by increasing the sensitivity of the 

energy levels to external-field perturbations. Numerical results show that external 

fields strongly influence degeneracy patterns in TiH. Magnetic fields remove 

degeneracy across 𝑚 = ±1, AB-flux fields create quasi-degeneracy, and the 

combined fields produce the most significant degeneracy lifting. Energy values 

consistently decrease with increasing vibrational quantum number 𝑛. Special 

cases obtained by varying the magnetic quantum number and slope parameter 

reduce to the known modified Kratzer–Coulomb potential, and the resulting 

spectra agree well with available literature. These findings highlight the sensitivity 

of TiH molecular states to the slope parameter and external fields. 

 

INTRODUCTION 

In quantum mechanics, solving the Schroedinger 

equation is critical for understanding the energy spectrum 

and other properties of quantum systems (Flugge, 1971). 

The solutions to this equation provide energy eigenvalues 

and eigenfunctions, which are essential for understanding 

the quantum states of particles or systems. These 

solutions are used in a range of applications, from 

determining energy levels in atoms and molecules to 

investigating mass spectra in quarkonia systems (Ibekwe 

et al., 2021), thermodynamic properties of quantum 

systems (Jia, Zhang & Wang, 2017), and even quantum 

information theory (Ikot et al., 2020). A wealth of 

research has been devoted to obtaining analytical 

solutions of the SE for various potential models. Among 

the most studied potentials are the Deng–Fan potential 

(Edet et al., 2022), the Improved Ultra-Generalized 

Exponential Hyperbolic Potential (Ikot et al., 2021), the 

Inverse Quadratic Yukawa potential (Horchani et al., 

2021), and the Modified Kratzer potential (Onyenegecha 

et al., 2021), to name just a few. The energy eigenvalues 

and wavefunctions associated with these potentials are of 

paramount importance for understanding the physical 

properties of quantum systems, such as their bound 

states, transitions, and spectrum.  

To solve the SE for these potentials, various 

mathematical techniques have been employed. These 

include the Nikiforov-Uvarov (NU) method (Nikiforov 

& Uvarov, 1988), the Nikiforov-Uvarov-Functional 

Analysis (NUFA) method (Ikot et al., 2021), the 

Extended Nikiforov-Uvarov (ENU) method (Karayer, 

Demirha & Buyukkilic, 2015), and the parametric NU 
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method (Tezcan & Sever, 2009), among others. Other 

techniques, such as the formula method (Falaye, Ikhdair 

& Hamzavi, 2015) and the Proper Quantization Rule 

(PQR) method (Serrano, Gu & Dong, 2010), have also 

been used to extract the energy eigenvalues and 

eigenfunctions. These methods are essential for solving 

the SE in situations where analytical solutions are 

difficult to obtain, particularly in systems with complex 

potential profiles.  

In recent years, a considerable body of work has emerged 

in the literature focusing on the effects of magnetic fields 

and Aharonov-Bohm (AB) flux fields on various 

quantum systems. These studies employ a wide range of 

analytical techniques and potential models to explore 

their impact. For example, using the asymptotic iteration 

method, (Aygun, Bayrak, Boztosun & Sahin, 2012) 

derived the energy eigenvalues of the Kratzer potential, 

both with and without the influence of a constant 

magnetic field, within the context of the 2D Schrödinger 

wave equation. Eshghi & Mehraban (2017) examined the 

behavior of a particle confined by both magnetic and AB 

flux fields under a radial scalar power potential. 

Additionally, Ikhdair, Hamzavi & Sever (2012) as well 

as Ikhdair & Hamzavi (2012) studied 2D harmonic and 

pseudo-harmonic oscillators in the presence of external 

fields, calculating the energy spectrum and wave 

functions for electrons in these systems. Similarly, 

Khordad (2010) & Cetin (2008) explored eigensolutions 

for a charged particle confined by a harmonic oscillator 

in the presence of both a strong magnetic field and an AB 

flux field, investigating various spectral properties. 

Ferkous & Bounames (2013) solved the 2D Pauli 

equation with the Hulthen potential for a spin-1/2 particle 

under the influence of an AB flux field, while Ferkous, 

Boultif & Sifour (2019) derived bound-state energy 

eigenvalues for a spin-1/2 particle subjected to the 

modified Pöschl-Teller potential in the presence of an AB 

field, further exploring the interaction between spin and 

magnetic flux. Nevertheless, despite the breadth of 

existing studies, our review indicates that the modified 

Kratzer energy-dependent screened Coulomb potential 

has not yet been investigated in the presence of external 

magnetic and Aharonov–Bohm (AB) flux fields to study 

the energy values of the titanium hydride. Addressing this 

gap constitutes the central objective of the present work. 

The modified Kratzer energy-dependent screened 

Coulomb potential is expressed as:  

 𝑉(𝑟, 𝐸𝑛𝑚) = 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)
2
−

𝐶

𝑟
(1 + g̃𝐸𝑛𝑚)𝑒−δr (1) 

where 𝐷𝑒  is the dissociation energy, 𝑟𝑒  is the equilibrium 

internuclear separation, 𝐶 is the depth of the potential, 𝛿 

is the screening parameter, and g̃ is the slope parameter 

and can be adjusted as desired. 

 

MATERIALS AND METHODS 

In this section, we briefly introduce the Nikiforov-Uvarov Functional Analysis (NUFA) method (Ikot et. al., 2021). 

This method is useful in solving second-order differential wave equations of the hypergeometric-type (Ikot et. al., 

2021):  
𝑑2𝜓(𝑠)

𝑑𝑠2 +
𝜏̃(𝑠)

𝜎(𝑠)

𝑑𝜓(𝑠)

𝑑𝑠
+

𝜎̃(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0          (2) 

where 𝜎(𝑠) and 𝜎̃(𝑠) are polynomials of at most second degree, and 𝜏̃(𝑠), is a first degree polynomial. Tezcan & Sever 

(2008), latter introduced the parametric form of NU method in the form 
𝑑2𝜓(𝑠)

𝑑𝑠2 +
𝛼1−𝛼2𝑠

𝑠(1−𝛼3𝑠)

𝑑𝜓(𝑠)

𝑑𝑠
+

1

𝑠2(1−𝛼3𝑠)2
[−𝜉1𝑠

2 + 𝜉2𝑠 − 𝜉3]𝜓(𝑠) = 0     (3) 

where 𝛼𝑖 and 𝜉𝑖(𝑖 = 1,2,3) are all parameters. It can be observed in Eq. (3) that the differential equation has two 

singularities at 𝑠 → 0 and 𝑠 → 1, thus it takes the wave function in the form 

𝜓(𝑠) = 𝑠𝜆(1 − 𝑠)𝑣𝑓(𝑠)          (4) 

Substituting Eq. (4) into Eq. (3) leads to the following equation 

𝑠(1 − 𝛼3𝑠)
𝑑2𝑓(𝑠)

𝑑𝑠2 + [𝜎1 + 2𝜆 − (2𝜆𝛼3 + 2𝑣𝛼3 + 𝛼2)𝑠]
𝑑𝑓(𝑠)

𝑑𝑠
− 𝛼3 (𝜆 + 𝑣 +

1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)(𝜆 +

𝑣 +
1

2
(

𝛼2

𝛼3
− 1) − √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2) + [

𝜆(𝜆−1)+𝛼1𝜆−𝜉3

𝑠
+

𝑣(𝑣−1)𝛼3+𝛼2𝑣−𝛼1𝛼3𝑣−
𝜉1
𝛼3

+𝜉2−𝜉3𝛼3

(1−𝛼3𝑠)
] 𝑓(𝑠) = 0 (5) 

Eq. (5) can be reduced to a Gauss hypergeometric equation if and only if the following functions vanish 

𝜆(𝜆 − 1) + 𝛼1𝜆 − 𝜉3 = 0          (6) 

𝑣(𝑣 − 1)𝛼3 + 𝛼2𝑣 − 𝛼1𝛼3𝑣 −
𝜉1

𝛼3
+ 𝜉2 − 𝜉3𝛼3 = 0       (7) 

Thus, Eq. (5) now becomes 

𝑠(1 − 𝛼3𝑠)
𝑑2𝑓(𝑠)

𝑑𝑠2 + [𝜎1 + 2𝜆 − (2𝜆𝛼3 + 2𝑣𝛼3 + 𝛼2)𝑠]
𝑑𝑓(𝑠)

𝑑𝑠
− 𝛼3 (𝜆 + 𝑣 +

1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2) ×

(𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) − √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)𝑓(𝑠) = 0       (8) 
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Solving Eqs. (6) and (7) completely give 

𝜆 =
1

2
((1 − 𝛼1) ± √(1 − 𝛼1)

2 + 4𝜉3)        (9) 

𝑣 =
1

2𝛼3
((𝛼3 + 𝛼1𝛼3 − 𝛼2) ± √(𝛼3 + 𝛼1𝛼3 − 𝛼2)

2 + 4(
𝜉1

𝛼3
+ 𝛼3𝜉3 − 𝜉2))            (10) 

Eq. (8) is the hypergeometric equation type of the form 

𝑥(1 − 𝑥)
𝑑2𝑓(𝑥)

𝑑𝑥2 + [𝑐 + (𝑎 + 𝑏 + 1)𝑥]
𝑑𝑓(𝑥)

𝑑𝑥
− [𝑎𝑏]𝑓(𝑥) = 0                 (11) 

where 𝑎, 𝑏, and 𝑐 are given as follows 

𝑎 = √𝛼3 (𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)                             (12) 

𝑏 = √𝛼3 (𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) − √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2)                             (13) 

𝑐 = 𝛼1 + 2𝜆                                 (14) 

Setting either 𝑎or 𝑏 equal to a negative integer−𝑛, the hypergeometric function 𝑓(𝑠) turns to a polynomial of degree 

𝑛. Hence, the hypergeometric function 𝑓(𝑠) approaches finite in the following quantum condition i.e. 𝑎 = −𝑛, where 

𝑛 = 0,1,2,3, . . . . . 𝑛𝑚𝑎𝑥 

Using the above quantum condition, 

√𝛼3 (𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) + √

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2) = −𝑛                 (15) 

𝜆 + 𝑣 +
1

2
(

𝛼2

𝛼3
− 1) +

𝑛

√𝛼3
= −√

1

4
(

𝛼2

𝛼3
− 1)

2

+
𝜉1

𝛼3
2                  (16) 

Squaring both sides of Eq. (16) and rearranging, one obtains the energy equation for the NUFA method as 

𝜆2 + 2𝜆 (𝑣 +
1

2
(

𝛼2

𝛼3
− 1) +

𝑛

√𝛼3
) + (𝑣 +

1

2
(

𝛼2

𝛼3
− 1) +

𝑛

√𝛼3
)

2

−
1

4
(

𝛼2

𝛼3
− 1)

2

−
𝜉1

𝛼3
2 = 0      (17) 

By substituting Eqs. (9) and (10) into Eq. (4), one obtains the corresponding wave equation for the NUFA method as: 

𝜓(𝑠) = ℕ𝑠
(1−𝛼1)+√(𝛼1−1)2+4𝜉3

2 (1 − 𝛼3𝑠)

(𝛼3+𝛼1𝛼3−𝛼2)+√(𝛼3+𝛼1𝛼3−𝛼2)2+4(
𝜉1
𝛼3

+𝛼3𝜉3−𝜉2)

2𝛼3 𝐹2
 

1(𝑎, 𝑏, 𝑐; 𝑠)       (18) 

where ℕ is the normalization constant.  

Only the positive sign is used above because it ensures a normalizable, physically acceptable wavefunction and 

produces discrete bound-state energies, while the negative sign leads to divergent or non-physical solutions. 

 

Solution of the 2D Schrodinger Equation TiH Diatomic Molecule with Magnetic and AB-flux Fields 

A generalized form of the Schrodinger Equation (SE) for a charged particle moving under the influence of the vector 

potential 𝐴 is written as (Purohit et al., 2020; Rampho et al., 2020; Ikot et al., 2020): 

(𝑖ℏ𝛻⃗⃗ +
𝑒

𝑐
𝐴)

2

𝜓(𝑟, 𝜙) = 2𝜇[𝐸𝑛𝑚 − 𝑉(𝑟)]𝜓(𝑟, 𝜙)                  (19) 

where 𝑒 and 𝜇 are the charge of the particle and reduced mass of the system respectively, 𝐸𝑛𝑚 is the energy 

eigenvalues, 𝑐is the velocity of light, 𝐴 is the vector potential and 𝑉(𝑟) scalar potential. To indicate the magnetic field 

and AB-flux field together, we express the vector potential 𝐴 as a sum of two terms 𝐴 = 𝐴1 + 𝐴2having azimuthal 

components as (Purohit et al., 2020; Rampho et al., 2020; Ikot et al., 2020; 2021): 

𝐴1 =
𝐵⃗⃗𝑒−𝛿𝑟

1−𝑒−𝛿𝑟 𝜙̂ and 𝐴2 =
𝛷𝐴𝐵

2𝜋𝑟
𝜙̂                    (20) 

where 𝐵⃗⃗ is the applied external magnetic field with 1 ,A B =


𝐴2represents the additional magnetic flux 𝛷AB = 𝜉 

created by a solenoid with 𝛻⃗⃗ ⋅ 𝐴2 = 0. Then the vector potential 𝐴 can be written as: 

𝐴 = (
𝐵⃗⃗𝑒−𝛿𝑟

1−𝑒−𝛿𝑟 +
𝜉

2𝜋𝑟
) 𝜙̂                     (21) 

where 𝜙̂ is the direction of magnetic flux around the solenoid. Also, we assume a wavefunction in the cylindrical 

coordinates to be of the form: 

𝜓(𝑟, 𝜙) = (2𝜋𝑟)−
1

2𝑒𝑖𝑚𝜙𝛺𝑛𝑚(𝑟)                     (22) 

where 𝑚 is the magnetic quantum number.  

Substituting Eq. (1) into Eq. (19), we have 
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(𝑖ℏ𝛻⃗⃗ +
𝑒

𝑐
𝐴)

2

𝜓(𝑟, 𝜙) = 2𝜇 [𝐸𝑛𝑚 − 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)

2

+
𝐶

𝑟
(1 + 𝑔̃𝐸𝑛𝑚)𝑒−𝛿𝑟] 𝜓(𝑟, 𝜙)          (23) 

For convenience, let us introduce 𝜆 =
𝑒

𝑐
, so that Eq. (23) becomes 

(𝑖ℏ𝛻⃗⃗ + 𝜆𝐴)
2
𝜓(𝑟, 𝜙) = 2𝜇 [𝐸𝑛𝑚 − 𝐷𝑒 +

2𝐷𝑒𝑟𝑒

𝑟
−

𝐷𝑒𝑟𝑒
2

𝑟2 +
𝐶

𝑟
𝑒−𝛿𝑟 +

𝐶𝑔̃𝐸𝑛𝑚

𝑟
𝑒−𝛿𝑟] 𝜓(𝑟, 𝜙)    (24) 

Using Eqs. (21) and (22) into Eq. (24) we get the 2nd order differential equation (DE) given as follows: 

𝛺𝑛𝑚
″ (𝑟) + [

2𝜇

ℏ2 (𝐸𝑛𝑚 − 𝐷𝑒 +
2𝐷𝑒𝑟𝑒

𝑟
−

𝐷𝑒𝑟𝑒
2

𝑟2 +
𝐶

𝑟
𝑒−𝛿𝑟 +

𝐶𝑔̃𝐸𝑛𝑚

𝑟
𝑒−𝛿𝑟) +

1

4𝑟2 −
𝑚2

𝑟2

+
2𝑚𝜆𝐵⃗⃗𝑒−𝛿𝑟

ℏ(1−𝑒−𝛿𝑟)𝑟
+

𝑚𝜆𝜉

ℏ𝜋𝑟2 −
𝜆2𝐵⃗⃗2𝑒−2𝛿𝑟

ℏ2(1−𝑒−𝛿𝑟)
2 −

𝜆2𝐵⃗⃗𝜉𝑒−𝛿𝑟

ℏ2(1−𝑒−𝛿𝑟)𝜋𝑟
−

𝜆2𝜉2

4𝜋2ℏ2𝑟2

]𝛺𝑛𝑚(𝑟) = 0  (25) 

Equation (25) is a complicated differential equation that cannot be solved easily due to the presence of centrifugal 
1

𝑟2 

as well as the reciprocal 
1

𝑟
 terms. Therefore, to bypass these terms we introduce the Greene-Aldrich approximation 

scheme (Greene & Aldrich, 1976). These approximations are given by: 
1

𝑟2 ≈
𝛿2

(1−𝑒−𝛿𝑟)
2 and

1

𝑟
≈

𝛿

(1−𝑒−𝛿𝑟)
          (26) 

Using the approximation terms of Eqs. (26) into Eq. (25) we have: 

 

𝛺𝑛𝑚
″ (𝑟) +

[
 
 
 
 
 
 
 
 

2𝜇𝐸𝑛𝑚

ℏ2 −
2𝜇𝐷𝑒

ℏ2 +
4𝜇𝛿𝐷𝑒𝑟𝑒

ℏ2(1−𝑒−𝛿𝑟)
−

2𝜇𝛿2𝐷𝑒𝑟𝑒
2

ℏ2(1−𝑒−𝛿𝑟)
2

+
2𝜇𝛿𝐶

ℏ2(1−𝑒−𝛿𝑟)
𝑒−𝛿𝑟 +

2𝜇𝛿𝐶𝑔̃𝐸𝑛𝑚

ℏ2(1−𝑒−𝛿𝑟)
𝑒−𝛿𝑟 +

2𝑚𝛿𝜆𝐵⃗⃗

ℏ(1−𝑒−𝛿𝑟)
2 𝑒−𝛿𝑟

−
𝜆2𝐵⃗⃗2

ℏ2(1−𝑒−𝛿𝑟)
2 𝑒−2𝛿𝑟 −

𝜆2𝛿𝐵⃗⃗𝜉

ℏ2𝜋(1−𝑒−𝛿𝑟)
2 𝑒−𝛿𝑟

−
[(𝑚−𝛾)2−

1

4
]𝛿2

(1−𝑒−𝛿𝑟)
2

]
 
 
 
 
 
 
 
 

𝛺𝑛𝑚(𝑟) = 0    (27) 

where we have defined the following parameters as 𝜙0 =
ℎ𝑐

𝑒
 and  𝛾 =

𝜉

𝜙0
. 

Now introducing the NUFA method of Eq. (3) into Eq. (27) with the following coordinate transformation 𝑧 = 𝑒−𝛿𝑟 . 
Equation (27) becomes 

𝑑2𝛺𝑛𝑚(𝑟)

𝑑𝑧2 +
1

𝑧

𝑑𝛺𝑛𝑚(𝑟)

𝑑𝑧
+

1

𝑧2

[
 
 
 
 
 

2𝜇𝐸𝑛𝑚

ℏ2𝛿2 −
2𝜇𝐷𝑒

ℏ2𝛿2 +
4𝜇𝐷𝑒𝑟𝑒

ℏ2𝛿(1−𝑧)
−

2𝜇𝐷𝑒𝑟𝑒
2

ℏ2(1−𝑧)2

+
2𝜇𝐶

ℏ2𝛿(1−𝑧)
𝑧 +

2𝜇𝐶𝑔̃𝐸𝑛𝑚

ℏ2𝛿(1−𝑧)
𝑧 +

2𝑚𝜆𝐵⃗⃗

ℏ𝛿(1−𝑧)2
𝑧

−
𝜆2𝐵⃗⃗2

ℏ2𝛿2(1−𝑧)2
𝑧2 −

𝜆2𝐵⃗⃗𝜉

ℏ2𝜋𝛿(1−𝑧)2
𝑧 −

[(𝑚−𝛾)2−
1

4
]

(1−𝑧)2 ]
 
 
 
 
 

𝛺𝑛𝑚(𝑟) = 0   (28) 

To make Eq. (28) solvable with NUFA method, let’s introduce the following dimensionless parameters 

−𝜀𝑛𝑚 =
2𝜇𝐸𝑛𝑚

ℏ2𝛿2 , 𝑄1 = −
2𝜇𝐷𝑒

ℏ2𝛿2 , 𝑄2 =
4𝜇𝐷𝑒𝑟𝑒

ℏ2𝛿
, 𝑄3 = −

2𝜇𝐷𝑒𝑟𝑒
2

ℏ2 , 𝑄4 =
2𝜇𝐶

ℏ2𝛿
, 𝑄5 =

2𝜇𝑎𝑔̃𝐸𝑛𝑚

ℏ2𝛿
, 𝑄6 =

2𝑚𝜆𝐵⃗⃗

ℏ𝛿
, 𝑄7 = −

𝜆2𝐵⃗⃗2

ℏ2𝛿2,  

𝑄8 = −
𝜆2𝐵⃗⃗𝜉

ℏ2𝛿𝜋
, 𝑄9 = − [(𝑚 − 𝛾)2 −

1

4
]              (29) 

𝑑2𝛺𝑛𝑚(𝑟)

𝑑𝑧2 +
1

𝑧

𝑑𝛺𝑛𝑚(𝑟)

𝑑𝑧
+

1

𝑧2 [
−𝜀𝑛𝑚 + 𝑄1 +

𝑄2

(1−𝑧)
+

𝑄3

(1−𝑧)2
+

𝑄4𝑧

(1−𝑧)
+

𝑄5𝑧

(1−𝑧)

+
𝑄6𝑧

(1−𝑧)2
+

𝑄7𝑧2

(1−𝑧)2
+

𝑄8𝑧

(1−𝑧)2
+

𝑄9

(1−𝑧)2

] 𝛺𝑛𝑚(𝑟) = 0     (30) 

and for mathematical simplicity and convenience Eq. (30) becomes: 
𝑑2Ω𝑛𝑚(𝑟)

𝑑𝑧2 +
(1−𝑧)

𝑧(1−𝑧)

𝑑Ω𝑛𝑚(𝑟)

𝑑𝑧
+

1

𝑧2(1−𝑧)2
[−(𝜀𝑛𝑚 + 𝑝1)𝑧

2 + (2𝜀𝑛𝑚 + 𝑝2)𝑧 − (𝜀𝑛𝑚 + 𝑝3)]Ω𝑛𝑚(𝑟) = 0     (31) 

Where 

𝑝1 = −𝑄1 + 𝑄4 + 𝑄5 − 𝑄7,     𝑝2 = −2𝑄1 − 𝑄2 + 𝑄4 + 𝑄5 + 𝑄6 + 𝑄8, 𝑝3 = −𝑄1 − 𝑄2 − 𝑄3 − 𝑄9  (32) 

And 

𝛼1 = 𝛼2 = 𝛼3 = 1, 𝜉1 = 𝜀𝑛𝑚 + 𝑝1, 𝜉2 = 2𝜀𝑛𝑚 + 𝑝2, 𝜉3 = 𝜀𝑛𝑚 + 𝑝3      (33) 

By comparing Eq. (31) with the NUFA method of Eq. (3), then we obtain the following (Ikot et al., 2021): 

𝜆 = √𝜀𝑛𝑚 + 𝑝3             (34) 

And 

𝑣 =
1

2
+ √

1

4
+ 𝜉1 − 𝜉2 + 𝜉3          (35) 
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Substituting Eqs. (33), (34) and (35) into Eq. (17), we get the energy eigenvalues as: 

𝜀𝑛𝑚 + 𝑝3 = [
𝑝1−𝑝3−(𝑛+𝑣)2

2(𝑛+𝑣)
]
2

           (36) 

Substituting Eqs. (29) and (32) into Eq. (36), we get 

𝐸𝑛𝑚 = 𝐷𝑒 − 2𝐷𝑒𝛿𝑟𝑒 + 𝐷𝑒𝛿
2𝑟𝑒

2 +
ℏ2𝛿2

2𝜇
[(𝑚 − 𝛾)2 −

1

4
] −

ℏ2𝛿2

2𝜇
[

2𝜇𝐶

ℏ2𝛿
+

2𝜇𝐶𝑔̃𝐸𝑛𝑚
ℏ2𝛿

+
𝜆̃2𝐵⃗⃗⃗2

ℏ2𝛿2+
4𝜇𝐷𝑒𝑟𝑒

ℏ2𝛿
−

2𝜇𝐷𝑒𝑟𝑒
2

ℏ2 −[(𝑚−𝛾)2−
1

4
]−(𝑛+𝑣)2

2(𝑛+𝑣)
]

2

 (37) 

Where 

𝜆 =
1

2
+ √𝜆2𝐵⃗⃗2

ℏ2𝛿2 +
2𝜇𝐷𝑒𝑟𝑒

2

ℏ2 + (𝑚 − 𝛾)2 −
2𝑚𝜆𝐵⃗⃗

ℏ𝛿
+

𝜆2𝐵⃗⃗𝜉

ℏ2𝛿𝜋
         (38) 

Equation (37) is an implicit self-consistent equation for the bound-state energy 𝐸𝑛𝑚, as it appears on both sides. It is 

solved numerically using an iterative procedure, starting from an initial guess and updating until convergence is 

achieved within a specified tolerance. Some optional methods of solution includes fixed-point iteration, Newton–

Raphson, or solve. 

Substituting Eqs. (29), (32) and (33) into Eq. (18), the corresponding Energy eigenfunction equation can be obtained 

as: 

𝛺𝑛𝑚(𝑧) = ℵ𝑛ℓ𝑧
√−

2𝜇𝐸𝑛𝑚

ℏ
2𝛿2

+
2𝜇𝐷𝑒

ℏ
2𝛿2

−
4𝜇𝐷𝑒𝑟𝑒

ℏ
2𝛿

+
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2 +[(𝑚−𝛾)2−

1

4
]

× (1 − 𝑧)

1

2
+√

1

4
+

2𝜇𝐷𝑒

ℏ
2𝛿2

+
2𝜇𝐶

ℏ
2𝛿

+
2𝜇𝐶𝑔̃𝐸𝑛𝑚

ℏ
2𝛿

+
𝜆2𝐵⃗⃗⃗2

ℏ
2𝛿2

𝐹2 1(𝑎, 𝑏, 𝑐; 𝑧)          

            (39) 

Where 

𝑎 = 𝛽 + 𝜎 + √𝜀𝑛𝑚 + 𝑝1                     (40) 

𝑏 = 𝛽 + 𝜎 − √𝜀𝑛𝑚 + 𝑝1                                (41) 

𝑐 = 1 + 2𝛽                      (42) 

and ℵ𝑛ℓ is the normalization constant 

 

RESULTS AND DISCUSSION 

The obtained numerical results of this study are discussed 

in this section. To do all the following calculations, the 

parameters are taken as follows: 𝐷𝑒 = 2.05 𝑒𝑉, 𝑟𝑒 =

1.781 Å, 𝛿 = 1.32408 Å−1, μ = 0.987371 a.m. u, 

ℏc = 1973.269 𝑒𝑉Å and 1 𝑎.𝑚. 𝑢 =
931.494028 𝑀𝑒𝑉𝑐−2 (Oyewumi et al., 2014).  The 

numerical results are presented in Tables 1, 2, and 3 for 

three different cases. Case 1: Slope parameter g̃ = −𝟏. 

For this case, both positive and negative energy values 

occur for all quantum states. A clear trend of decreasing 

energy with increasing 𝑛 is observed across all 

configurations and magnetic quantum numbers. When 

both the magnetic and AB-flux fields are set to zero, the 

system exhibits degeneracy across 𝑚 = ±1. When a 

magnetic field is applied while the AB-flux field remains 

zero, this degeneracy is lifted, and separate energy levels 

appear for each value of 𝑚. Both positive and negative 

energy levels shift downward. When the magnetic field 

is removed, but a non-zero AB-flux is present, quasi-

degeneracy appears as a partial overlap in the energies of 

𝑚 = ±1. In this case, the energy values also decrease 

compared to the field-free case. When both magnetic and 

AB-flux fields are non-zero, the strongest degeneracy 

lifting occurs. This configuration results in the lowest 

positive energy values and the most negative energy 

values among the four cases, indicating that the combined 

fields have a stronger perturbative effect than either field 

alone. Case 2: Slope parameter g̃ = 𝟎. In this table, only 

positive energy values are obtained for all field 

configurations and quantum states. For each value of 𝑚, 

energy decreases with increasing 𝑛, maintaining a 

consistent trend. Compared to Table 1 (g̃ = −1), the 

energy spectrum is shifted upward. 
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Table 1: Numerical Eigenvalues of the Modified Kratzer Energy-Dependent Screened Coulomb Potential (MKEDSCP) for TiH Diatomic Molecule with 

various 𝒏and 𝒎Quantum States for Energy Coefficient 𝒈̃ = −𝟏with the impact of magnetic 𝑩⃗⃗⃗ field and AB-flux field 𝝃⃗⃗ 

𝑬𝒏𝒎(𝒆𝑽)  TiH 𝒈̃ = −𝟏   

𝒎 𝒏 𝑬𝒏𝒎(𝑩̃ = 𝝃̃ = 𝟎) 𝑬𝒏𝒎(𝑩̃ = 𝟎. 𝟎𝟎𝟏, 𝝃̃ = 𝟎) 𝑬𝒏𝒎(𝑩̃ = 𝟎, 𝝃̃ = 𝟎. 𝟎𝟎𝟏) 𝑬𝒏𝒎(𝑩̃ = 𝝃̃ = 𝟎. 𝟎𝟎𝟏) 

 

 

-1 

0 

1 

2 

3 

0.5726200299, −15.27371997 

0.5288093857, −15.78517790 

0.4839029615, −16.30537954 

0.4379112255, −16.83433535 

2.432351424, −46.52985936 

2.344753331, −47.71546815 

2.255383526, −48.90914474 

2.164287178, −50.11093421 

0.5726207212, −15.27373621 

0.5288100836, −15.78519432 

0.4839036650, −16.30539614 

0.4379119352, −16.83435213 

0.3756109053,   −71.90812628 

0.2585360109,   −73.26172860 

0.1402175036,   −74.62392680 

0.02066907465, −75.99473456 

 

 

 

0 

0 

1 

2 

3 

0.5722747938, −15.26560772 

0.5284604579, −15.77697320 

0.4835506997, −16.29708274 

0.4375559780, −16.82594681 

2.507451526, −45.46303645 

2.421517363, −46.64144075 

2.333766820, −47.82786820 

2.244248144, −49.02236698 

0.5722747938, −15.26560772 

0.5284604579, −15.77697320 

0.4835506997, −16.29708274 

0.4375559781, −16.82594682 

0.4639818710,   −70.85516157 

0.3478976206,   −72.20209169 

0.2305582296,   −73.55760615 

0.1119779592,   −74.92171921 

 

 

 

 1 

0 

1 

2 

3 

0.5726200299, −15.27371997 

0.5288093857, −15.78517790 

0.4839029615, −16.30537954 

0.4379112255, −16.83433535 

2.585500478, −44.41461486 

2.501218321, −45.58581740 

2.415074437, −46.76499765 

2.327120257, −47.95220711 

0.5726193400, −15.27370375 

0.5288086879, −15.78516150 

0.4839022563, −16.30536295 

0.4379105147, −16.83431858 

0.5551377465,   −69.82044022 

0.4400254835,   −71.16070582 

0.3236468771,  −72.50954456 

0.2060167532,  −73.86697128 

 

Table 2: Numerical Eigenvalues of the Modified Kratzer Energy-Dependent Screened Coulomb Potential (MKEDSCP) for TiH Diatomic Molecule with 

Various 𝒏and 𝒎Quantum States for Energy Coefficient 𝒈̃ = 𝟎with the Impact of Magnetic 𝑩⃗⃗⃗ Field and AB-flux Field 𝝃⃗⃗ 

𝑬𝒏𝒎(𝒆𝑽) TiH 𝒈̃ = 𝟎   

𝒎 𝒏 𝑬𝒏𝒎(𝑩̃ = 𝝃̃ = 𝟎) 𝑬𝒏𝒎(𝑩̃ = 𝟎. 𝟎𝟎𝟏, 𝝃̃ = 𝟎) 𝑬𝒏𝒎(𝑩̃ = 𝟎, 𝝃̃ = 𝟎. 𝟎𝟎𝟏) 𝑬𝒏𝒎(𝑩̃ = 𝝃̃ = 𝟎. 𝟎𝟎𝟏) 

 

 

-1 

0 

1 

2 

3 

1.320653216 

1.216561505 

1.110582030 

1.002716953 

3.217928668 

3.132291088 

3.041271046 

2.944975098 

1.320655361 

1.216563604 

1.110584083 

1.002718963 

0.5749703663 

0.3978471323 

0.2168830982 

0.03213034432 

 

 

 

0 

0 

1 

2 

3 

1.319581582 

1.215512008 

1.109554387 

1.001710905 

3.287034129 

3.206366054 

3.120215362 

3.028692387 

1.319581582 

1.215512009 

1.109554388 

1.001710904 

0.7072201400 

0.5331404637 

0.3551779056 

0.1733859235 

 

 

       

1 

0 

1 

2 

3 

1.320653216 

1.216561505 

1.110582030 

1.002716953 

3.358238763 

3.282577986 

3.201332158 

3.114615500 

1.320651074 

1.216559406 

1.110579972 

1.002714938 

0.8426097547 

0.6715662430 

0.4965974162 

0.3177581317 
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Table 3: Numerical Eigenvalues of the Modified Kratzer Energy-Dependent Screened Coulomb Potential (MKEDSCP) for TiH Diatomic Molecule with 

Various 𝒏and 𝒎Quantum States for Energy Coefficient 𝒈̃ = 𝟏with the Impact of Magnetic 𝑩⃗⃗⃗ Field and AB-flux Field 𝝃⃗⃗ 

𝑬𝒏𝒎(𝒆𝑽) TiH 𝒈̃ = 𝟏   

𝒎 𝒏 𝑬𝒏𝒎(𝑩̃ = 𝝃̃ = 𝟎) 𝑬𝒏𝒎(𝑩̃ = 𝟎. 𝟎𝟎𝟏, 𝝃̃ = 𝟎) 𝑬𝒏𝒎(𝑩̃ = 𝟎, 𝝃̃ = 𝟎. 𝟎𝟎𝟏) 𝑬𝒏𝒎(𝑩̃ = 𝝃̃ = 𝟎. 𝟎𝟎𝟏) 

 

 

-1 

0 

1 

2 

3 

3.773706846, −2.317625174 

3.755946592, −2.222435816 

3.728502443, −2.116190499 

3.690195987, −1.997710812 

3.770716533, −30.01471170 

3.752064496, −29.81851805 

3.725065040, −29.61260493 

3.689352746, −29.39660690 

3.773714435, −2.317625775 

3.755954296, −2.222436502 

3.728510276, −2.116191285 

3.690203968, −1.997711721 

1.146192329,     −23.56452380 

0.8222438013,   −23.03549754 

0.4656187223,   −22.47242266 

0.07181908109, −21.87080115 

 

 

 

0 

0 

1 

2 

3 

3.769913569, −2.317327002 

3.752096223, −2.222092927 

3.724587607, −2.115795517 

3.686207301, −1.997254363 

3.776897561, −30.18253957 

3.765425939, −29.99476299 

3.745912278, −29.79757229 

3.718013948, −29.59062489 

3.769913574, −2.317327000 

3.752096228, −2.222092925 

3.724587611, −2.115795515 

3.686207305, −1.997254361 

1.372533159,     −23.95243440 

1.071298331,     −23.44719037 

0.7402339659,   −22.91074475 

0.3755523907,   −22.33930985 

 

 

       

1 

0 

1 

2 

3 

3.773706846, −2.317625174 

3.755946592, −2.222435816 

3.728502443, −2.116190499 

3.690195987, −1.997710812 

3.784326381, −30.34463637 

3.779866720, −30.16510636 

3.767655600, −29.97645283 

3.747371393, −29.77835417 

3.773699263, −2.317624579 

3.755938896, −2.222435128 

3.728494618, −2.116189704 

3.690188014, −1.997709896 

1.593241820,     −24.32773315 

1.313184189,     −23.84473118 

1.005764069,     −23.33299467 

0.6677620971,   −22.78930425 
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In the absence of both magnetic and AB-flux fields, 

degeneracy is present across 𝑚 = ±1. When the 

magnetic field is applied alone, degeneracy is lifted and 

the highest energy values among all configurations are 

obtained, with the level spacing widening as the magnetic 

field strengthens. When the magnetic field is switched off 

but a non-zero AB-flux field is applied, quasi-degeneracy 

is observed at 𝑚 = ±1, and the standard decrease of 

energy with increasing 𝑛 persists. When both fields are 

non-zero, degeneracy is fully lifted and this combination 

yields the lowest energy values for this slope parameter. 

Case 3: Slope parameter g̃ = 1. The same overall patterns 

observed for g̃ = −1 are also present in this table. 

However, in this case, the positive energy values 

decrease, while for the negative energy, the energy values 

increase. This behavior reflects the influence of a positive 

slope parameter, which modifies the curvature of the 

effective potential and alters how sensitively the system 

responds to the external perturbations. Figure 1 presents 

the variation of the energy eigenvalues of the TiH 

diatomic molecule as a function of the external magnetic 

field 𝐵, in the absence of the Aharonov–Bohm (AB) flux 

field and for an energy slope parameter g̃ = 1, 

corresponding to a magnetic quantum number 𝑚 = 1. 

The curves represent the quantum states 𝑛 = 0,1,2,3. A 

consistent trend is observed across all states. The energy 

eigenvalues increase sharply with increasing magnetic 

field strength in the low-𝐵 regime. Beyond a certain 

magnetic field threshold, the rate of increase diminishes 

and the curves exhibit saturation behavior, becoming 

asymptotic to an upper energy limit of approximately 3.8 

eV. Among the quantum states, the ground state (𝑛 = 0) 

consistently attains the highest energy at each magnetic 

field value, followed in descending order by the excited 

states (𝑛 = 1,2,3). This ordering is preserved throughout 

the entire magnetic field range, with no level crossing 

observed for any magnetic quantum number considered. 

 

 
Figure 1: Variation of the Energy Eigenvalues of TiH Diatomic Molecule 

under the Influence of the Magnetic field for 𝑚 = 1, 𝑔̃ = 1and 𝜉 = 0 

 

Figure 2 below illustrates the variation of the energy 

eigenvalues as a function of the external magnetic field 

𝐵 under the combined influence of a non-zero AB-flux 

field and an energy slope parameter g̃ = 1, corresponding 

to 𝑚 = 1. The curves again represent the quantum states 

𝑛 = 0,1,2,3. In this configuration, all energy eigenvalues 

exhibit a sharp decrease from their initial values at 𝐵 ≈
0, reaching distinct minima around 𝐵 ≈ 0.001 T. The 

ground state (𝑛 = 0) attains the highest minimum energy, 

while the excited states (𝑛 = 1,2,3) display progressively 

lower minima, preserving their relative ordering. Beyond 

the minimum points, the energy eigenvalues increase 

gradually and smoothly with increasing magnetic field 

strength, accompanied by a growing separation between 

adjacent energy levels. At higher magnetic field values, 

the energy curves approach different saturation limits, 

approximately 1.2 eV, 1.4 eV, and 1.6 eV for the ground 

state, with corresponding but distinct saturation values 

for higher excited states, depending on the quantum state 

and magnetic quantum number. 
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Figure 2: Variation of the Energy Eigenvalues of TiH Diatomic Molecule 

under the Influence of the Magnetic field for 𝑚 = 1, 𝑔̃ = 1and 𝜉 = 0.001 

 

Figure 3 below depicts the variation of the energy 

eigenvalues with respect to the Aharonov–Bohm flux 

field in the absence of an external magnetic field, for an 

energy slope parameter g̃ = 1 and magnetic quantum 

number 𝑚 = 1. The quantum states 𝑛 = 0,1,2,3 are 

shown as the coloured plots on the figure. In this case, the 

energy eigenvalues remain constant across the entire 

range of AB-flux values considered. The energy levels 

are clearly separated by a uniform positive spacing of 

approximately 0.1 eV between adjacent quantum states. 

The ground state (𝑛 = 0) consistently exhibits the 

highest energy value (approximately 0.05 eV), while the 

excited states show monotonically decreasing energies 

with increasing 𝑛. The relative ordering of the energy 

levels remains unchanged for all magnetic quantum 

numbers. 

 

 
Figure 3: Variation of the Energy Eigenvalues of TiH Diatomic Molecule 

under the Influence of the AB-flux field for 𝑚 = 1, 𝑔̃ = 1and 𝐵⃗⃗ = 0 

 

Figure 4 below shows the behavior of the energy 

eigenvalues as a function of the Aharonov–Bohm flux 

field in the presence of a non-zero magnetic field, with 

an energy slope parameter g̃ = 1 and magnetic quantum 

number 𝑚 = 1. For all quantum states, the energy 

eigenvalues decrease monotonically as the AB-flux field 

increases. The energy values initially start slightly above 

zero and rapidly transition into the negative energy 

domain as the AB-flux increases. 

The spacing between adjacent energy levels becomes 

very small, giving rise to an almost degenerate spectrum, 

although the ground state (𝑛 = 0) consistently remains 

the uppermost curve. The overall shape and ordering of 

the energy levels are preserved across the entire AB-flux 

range, with no level crossing or inversion observed. 
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Figure 4: Variation of the Energy Eigenvalues of TiH Diatomic Molecule 

under the Influence of the AB-flux field for 𝑚 = 1, 𝑔̃ = 1and 𝐵⃗⃗ = 0.001 

 

Since the result in Eq. (39) is new and there is no 

available literature with which to compare this study, we 

rather investigate the Special cases obtained by varying 

the magnetic quantum number and slope parameter 

reduce to the known modified Kratzer–Coulomb 

potential, and the resulting spectra agree well with 

available literature. By setting 𝑚 = ℓ +
1

2
 and 𝑔̃ = 0 in 

Eq. (39), turns to be in the form: 

𝐸𝑛ℓ = 𝐷𝑒 − 2𝐷𝑒𝛿𝑟𝑒 + 𝐷𝑒𝛿
2𝑟𝑒

2 +
ℏ
2𝛿2ℓ(ℓ+1)

2𝜇
−

ℏ
2𝛿2

2𝜇
×

[

4𝜇𝐷𝑒𝑟𝑒+2𝜇𝐴

ℏ
2𝛿

−
2𝜇𝐷𝑒𝑟𝑒

2

ℏ
2 −ℓ(ℓ+1)−(𝑛+

1

2
+√1

4
+

2𝜇𝐷𝑒𝑟𝑒
2

ℏ
2 +ℓ(ℓ+1))

2

2(𝑛+
1

2
+√1

4
+

2𝜇𝐷𝑒𝑟𝑒
2

ℏ
2 +ℓ(ℓ+1))

]

2

(43) 

Equation (43) is consistent with the one obtained in Eq. 

(23) of (Edet et al., 2020). The numerical energy values 

of Eq. (43) are presented in tables 4 and 5 below: 

 

Table 4: Comparison of the Numerical Eigenvalues (in eV) of Modified Kratzer Screened Coulomb Potential 

for Different Values of 𝒏 and 𝓵 for Different Diatomic Molecules 

𝒏 𝓵 N2 [NU] 

Edet et al., (2020) 

N2 [NUFA] 

(Present) 

CO [NU] 

Edet et al., (2020) 

CO [NUFA] 

(Present) 

0 0 9.474983971 9.474994070 8.541820250 8.541831363 
      

0 

1 

 

1 

9.474953820 

9.474959637 

9.474964931 

9.474959748 

8.541790206 

8.541796145 

8.541711317 

8.541796145 
      

0 

1 

2 

 

2 

9.474923928 

9.474929746 

9.474941385 

9.474934939 

9.474939757 

9.474952396 

8.541760426 

8.541766365 

8.541778244 

8.541771537 

8.541777476 

8.541789355 
      

0 

1 

2 

3 

 

 

3 

9.474894291 

9.474900111 

9.474911752 

9.474929214 

9.474895392 

9.474911222 

9.474922863 

9.474939325 

8.541730906 

8.541736847 

8.541748729 

8.541766552 

8.541741917 

8.541747958 

8.541759839 

8.541777663 
      

0 

1 

2 

3 

4 

 

 

4 

9.474864907 

9.474870728 

9.474882372 

9.474899837 

9.474923125 

9.474875918 

9.474881839 

9.474893483 

9.474899848 

9.474934236 

8.541701644 

8.541707586 

8.541719470 

8.541737298 

8.541761068 

8.541712755 

8.541718697 

8.541729581 

8.541738399 

8.541762179 
      

0 

1 

2 

3 

4 

5 

 

 

 

5 

9.474835771 

9.474841594 

9.474853240 

9.474870708 

9.474894001 

9.474923116 

9.474846882 

9.474852695 

9.474864351 

9.474871819 

9.474885112 

9.474934227 

8.541672636 

8.541678579 

8.541690466 

8.541708297 

8.541732072 

8.541761790 

8.541783747  

8.541789689 

8.541791577 

8.541819398 

8.541843183 

8.541872891 
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Table 5: Comparison of the Numerical Eigenvalues (in eV) of Modified Kratzer Screened Coulomb Potential 

for Different Values of 𝒏 and 𝓵 for Different Diatomic Molecules 

𝒏 𝓵 NO [NU] 

Edet et al., (2020) 

NO [NUFA] 

(Present) 

CH [NU] 

Edet et al., (2020) 

CH [NUFA] 

(Present) 

0 0 6.303864689 6.303875790 3.124280611 3.124291722 
      

0 

1 

 

1 

6.303836703 

6.303842142 

6.303847814 

6.303853253 

3.124022422 

3.124061521 

3.124033533 

3.124072632 
      

0 

1 

2 

 

2 

6.303808986 

6.303814426 

6.303825311 

6.303819107 

6.303825537 

6.303836422 

3.123774225 

3.123813539 

3.123892189 

3.123785336 

3.123824640 

3.123893299 
      

0 

1 

2 

3 

 

3 

6.303781534 

6.303786975 

6.303797863 

6.303835965 

6.303792645 

6.303797906 

6.303798974 

6.303846976 

3.123535425 

3.123574942 

3.123653997 

3.123772630 

3.123548536 

3.123585953 

3.123644998 

3.123783741 
      

0 

1 

2 

3 

4 

 

 

4 

6.303754342 

6.303759786 

6.303770676 

6.303787009 

6.303808788 

6.303765453 

6.303769897 

6.303781787 

6.303798110 

6.303819899 

3.123305474 

3.123345183 

3.123424620 

3.123543823 

3.123702849 

3.123317586 

3.123356294 

3.123435731 

3.123554934 

3.123713951 
      

0 

1 

2 

3 

4 

5 

 

 

 

5 

6.303727408 

6.303732853 

6.303743746 

6.303760084 

6.303781868 

6.303809097 

6.303738519 

6.303743964 

6.303754857 

6.303771195 

6.303783980 

6.303810018 

3.123083866 

3.123123755 

3.123203553 

3.123323296 

3.123483035 

3.123682842 

3.123194977 

3.123134866 

3.123214664 

3.123334397 

3.123494146 

3.123593953 

 

CONCLUSION 

This study has examined the influence of magnetic and 

Aharonov–Bohm flux fields on the Titanium Hydride 

(TiH) diatomic molecule using the modified Kratzer 

energy-dependent screened Coulomb potential. By 

applying the NUFA method, closed-form energy 

expressions were obtained and numerically evaluated for 

various values of the slope parameter g̃. The results 

reveal that the slope parameter plays a central role in 

shaping the molecular energy spectrum. Negative slope 

values (g̃ < 0) allow both positive and negative bound-

state energies, zero slope yields only positive states, 

while positive slope values (g̃ > 0) influence the spacing 

and symmetry of the energy levels. External fields 

significantly modify degeneracy patterns in TiH. 

Magnetic fields remove degeneracy across 𝑚 = ±1, AB-

flux fields induce quasi-degeneracy, and the combined 

fields cause the strongest degeneracy lifting and the 

largest downward shift in energy. Across all cases, 

energy levels decrease with increasing vibrational 

quantum number 𝑛, and the special cases considered 

reduce smoothly to the known modified Kratzer–

Coulomb solutions, confirming the accuracy of the 

model. Overall, the study demonstrates that both the 

slope parameter and external fields are powerful tools for 

tuning molecular energy spectra, with important 

implications for molecular control, spectroscopy and 

field-dependent molecular dynamics. 
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