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Advancements in MoS2-based Nanocomposites for Photothermal and Chemotherapy
Applications: A Mini-Review
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ABSTRACT

Nanomaterials are recognized for their excellent properties and can be used in all
areas of life. Nanomaterial-based drug delivery systems are increasingly
promising and useful as tools in cancer therapy. Molybdenum sulfide (MoS>), a
2D material, is extensively studied today due to its exceptional characteristics and
wide range of applications. Due to its unique properties and versatility for
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Keywords: numerous applications, MoS, has garnered considerable attention from
Nanocomposites, researchers worldwide. MoS; has been extensively explored for biomedical
MoS,, applications due to its excellent photothermal conversion ability. Multiple
Photothermal, research papers have explored the advancements and applications of MoS,
Photodynamic, materials, but this article aims to provide an overview of its photothermal and
Chemotherapy. chemotherapy applications.

INTRODUCTION two-dimensional semiconductors. TMDCs possess

Two-dimensional (2D) van der Waals materials have
garnered significant attention from researchers due to
their wide-ranging applications in optics, electronics,
chemistry, and biology (Kabel et al., 2021; Mohammad-
Andashti et al., 2022; Roy et al., 2019). Graphene was the
first 2D material to be discovered, known for its
exceptional properties and extensive applications.
However, due to its inherent zero bandgap, scientists
have been motivated to explore transition-metal
dichalcogenides (TMDCs) as an alternative (Arul &
Nithya, 2016). Zero bandgap materials, exemplified by
graphene, present inherent limitations that restrict their
applicability in nanoelectronic and optoelectronic
devices. The absence of an energy bandgap results in
continuous electronic states at the Fermi level, which
inhibits effective current modulation and prevents the
establishment of a clear on/off switching ratio in field-
effect transistors. This characteristic also limits their
performance in photodetectors, logic devices, and light-
emitting systems, where controlled charge separation and
selective optical absorption are required. Efforts to
induce a practical bandgap often led to compromised
carrier mobility or structural distortion, thereby limiting
their technological utility (Hao et al., 2025; Toth &
Velicky, 2017) .

These challenges have stimulated significant interest in
transition-metal dichalcogenides (TMDCs) as alternative
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intrinsic, layer-dependent band gaps within the visible to
near-infrared spectrum, enabling efficient switching
behavior and strong light-matter interactions. Their
stable semiconducting nature, coupled with mechanical
flexibility and chemical robustness, positions them as
promising candidates for next-generation electronic and
optoelectronic applications. This has led researchers to
explore van der Waals 2D materials beyond graphene,
such as hexagonal boron nitride (h-BN) and TMDCs.
Unlike metallic graphene and electrically insulating h-
BN, 2D TMDCs possess band gaps similar to that of
silicon, which is crucial for field-effect transistors (FETS)
(Bello et al., 2024; Weiss et al., 2012).

TMDCs have found applications due to their favorable
electronic, optical, mechanical, chemical, and thermal
properties. There is significant research interest in the
transition from indirect band gaps in bulk TMDCs to
direct band gaps in monolayer TMDCs (Kabel et al.,
2021; Wang et al., 2012a). TMDCs have been widely
explored in energy storage, sensors, catalysis, and
biomedicine. Notably, chalcogenides such as MoS2, WS.,
and WSe: have demonstrated lower toxicity compared to
graphene, suggesting their potential for a range of
biomedical applications (Bello et al., 2020a; Zhang, Wu,
Williams, Niu, et al., 2019). Among all known TMDC:s,
MoS: has garnered significant attention since 2013 due
to its direct bandgap and remarkable optoelectronic,
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catalytic, energy, chemical, and biological properties,
leading to widespread applications (Arul & Nithya, 2016;
Chikukwa et al., 2021; Guo & Li, 2020; Kabel et al.,
2021; Radhakrishnan et al., 2022; Tulsani et al., 2019;
Yadav et al., 2019). The hexagonal layers of MoS: are
held together by weak van der Waals forces, allowing it
to be exfoliated into single-layer (2D) materials. In bulk
MoS:, indirect band gaps transition to direct band gaps in
monolayers. 2D MoS: can be designed with controlled
morphologies, including nano-flakes, nanoflowers,
nanosheets, nanospheres, and quantum dots, for various
applications (Pallikkarathodi Mani et al., 2018; Xu et al.,
2019). MoS: is a material with a double-layer structure
known for its low cytotoxicity and genotoxicity.
Previous studies indicate that MoS: contains many
unsaturated bonds, and reducing the number of layers
transforms its structure from an indirect to a direct
bandgap, thereby enhancing its photocatalytic
performance (Cai et al., 2016; Liu et al., 2022). However,
reducing the lamellar problem of MoS: has always been
challenging. MoS: also features a larger specific surface
area and stronger adsorption capacity, making it more
likely to interact with other substances. Studies have
shown that MoS: exhibits a better response to light,
causing oxidative and membrane stress in organisms,
which impedes their survival (Cao et al., 2017; Gao et al.,
2015). Additionally, MoS: can produce hydroxyl free
radicals that damage cell walls and membranes,
achieving antibacterial effects. Thus, it is crucial to
reduce the number of MoS: layers and improve the
separation efficiency of photogenerated carriers through
simple methods to achieve superior light-driven
antibacterial activity. However, when MoS: is excited by
light, the resulting electron-hole pairs quickly recombine,
which limits its bactericidal efficacy (Alimohammadi et
al., 2018; Liu et al., 2022).

MoS: has been investigated as a drug delivery carrier in
numerous studies. It is particularly promising for
photothermal therapy (PTT) treatments for cancer due to
its high photothermal conversion efficiency in the near-
infrared (NIR) region (Mou et al., 2015; Zhang et al,,
2017). However, for clinical applications, MoS: needs to
be modified to enhance its biocompatibility and colloidal
stability. Modifications with poly(ethylene glycol),
peptides, silica, and proteins have been employed to
achieve this. Despite these pioneering studies, research
on using MoS: for targeted drug delivery remains limited
(Ariyasu et al., 2017; Lee et al., 2016; Liu et al., 2014;
Wang et al.,, 2016). In this review, we examine the
properties and applications of MoS, nanomaterials,
including their use in photothermal and chemotherapy
treatments. Recent progress shows that among the
TMDC materials, MoS; has been showing outstanding
results for the drug delivery system.
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Overview of Molybdenum Sulfide (MoS:)

Following the discovery of graphene in 2004 and
subsequent advancements in graphene-like two-
dimensional (2D) nanostructures, single-layered
transition metal dichalcogenides, such as MoS: and WS,
emerged as key materials for the next generation of 2D
materials. Their large intrinsic band gaps make them
ideal replacements for graphene, which lacks a band gap.
Additionally, these materials possess narrow band gaps
that are comparable to those of graphene (Coleman et al.,
2011, Lee et al., 2012; Ramakrishna Matte et al., 2010;
Wang et al., 2012b). MoS, often referred to as "moly,"
is an inorganic compound composed of molybdenum and
sulfur. This compound belongs to the class of transition
metal dichalcogenides. Molybdenum, a transition metal
with a partially filled d-shell, contributes to the chemical
stability and versatility of MoS, in compound synthesis.
Metal disulfide compounds and nanocomposites are
particularly attractive for a wide range of mechanical,
electrical, and other applications due to the presence of
strong S-S bonds (Bazaka et al., 2019; Gu et al., 2016).
MoS; nanostructures have significantly improved due to
their distinct physical and chemical characteristics. It has
become a viable contender for sustainable applications
that are both cost-effective and efficient (Zhang et al.,
2016) MoS: has a layered structure resembling graphite,
with Van der Waals forces holding together the S-Mo-S
sandwiched layers. The spacing between adjacent Mo
layers in MoS:, which are sandwiched between sulfur
layers, is 0.615 nm. This distance is nearly twice the
spacing between graphite layers, which is 0.335 nm (Wu
et al., 2015). Because of their atomic-layered thickness
and 2D morphology, these features have led to a variety
of applications, including energy storage, catalysis, light
harvesting, gas sensors, biomedicine, etc. (Bello et al.,
2020b; Huang et al., 2011, 2013; Novoselov et al., 2004,
2005; Zhang & Huang, 2017).

Occurrence of Molybdenum Sulfide (MOS:)

MoS: naturally occurs in 'molybdenite,’ the primary
source of molybdenum. It can be concentrated from its
ores using foam flotation. Nowadays, molybdenite is
predominantly obtained as a byproduct of copper mining
(Benavente et al., 2002). MoS,, a black solid with a bright
sheen, is the primary ore of molybdenum. Its crystal
structure consists of a hexagonal plane of sulfur (S) atoms
on either side of a hexagonal plane of molybdenum (Mo)
atoms. These three planes stack on top of each other,
forming two-dimensional sheets of MoS,, held together
by strong covalent bonds between the Mo and S atoms
(Mitchell et al., 2020; Rodriguez et al., 2021). The natural
occurrence of MoS; is shown in Figure 1.
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Figure 1: Naturally occurring crystal of Molybdenite (MOSz) The crystals
are approximately 2 cm across. Image adapted from Chianelli et al.
(Chianelli et al., 2006), Copyright, Taylor & Francis Publishers, 2005.

The metal dichalcogenide layer comprises a plane of
hexagonally packed metal atoms sandwiched between
two planes of chalcogenide atoms. In these layers, the
chalcogen atoms surrounding each metal atom typically
form an octahedral or trigonal prismatic arrangement.
Because of their extremely anisotropic characteristics,
Molybdenum (Mo) is one of the transition metals of
groups IVb, Vb, and VIb that are part of the layered
dichalcogenides (Wilson & Yoffe, 1969). MoS; is a
polytypic material since it can be found in three different
crystalline structures: hexagonal (2H), trigonal (3R), and
synthetic octahedral (1T). The 2H structure belongs to the
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P63/mmc space group (a = b = 3.16 A, ¢ = 12.29 A)
(Benavente et al., 2002), while the 3R structure is part of
the R3m space group (a = b = 3.16 A, ¢ = 18.37 A)
(SCHONFELD et al., 1983). The metastable 1T-MoS:
structure falls under the P1 space group (a=b =3.36 A,
c=6.29 A) (Py & Haering, 1983). Additionally, the point
groups of Dgh, Csy, and Dgq in the structures (2H, 3R, and
1T) have semiconductor, metal, and semiconductor
electronic behavior, respectively (Mouloua et al., 2021).
The three structures of the MoS, polymorphs are depicted
in Figure 2(a-c).
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Figure 2: (a) Three-dimensional representation of the structure of MoS,. Single layers, 6.5 A thick, can be extracted
using scotch tape-based micromechanical cleavage. Image reproduced from Radisavljevic et al. (Radisavljevic et al.,
2011), Copyright, Macmillan Publishers, 2011. (b) Optimized structures of MoS, monolayer with four adsorption
sites: (1) hollow site, (2) top site of the S atom, (3) Mo—S bridge site, and (4) top site of the Mo atom. Image reprinted
from Chen et al. (Chen et al., 2013), Copyright, Elsevier Publishers, 2011. (¢) Representation of the 3 polytype
structures 1 T, 2H, and 3R MoS; from both (Top and side views). [images reproduced from Molybdenum Disulfide

(MoS;): Theory & Applications].

In these polymorphs, the first digit indicates the number
of monolayers in a unit cell, while the letters T, H, and R
represent the structural symmetries: trigonal, hexagonal,
and rhombohedral, respectively (He & Que, 2016; Jaleel
UC et al., 2022). These phases are distinguished by their
unique features resulting from changes in layer
symmetry. The 1T trigonal phase, with its deformed
octahedral symmetry, is known for its metallic behavior
and effective electrical conductivity. The hexagonal 2H
phase, characterized by a band gap, exhibits
semiconducting properties. The 3R phase, with

rhombohedral symmetry and rotational stacking, also
demonstrates semiconductor capabilities, but its specific
properties differ due to the unique layer arrangement.
These structural variations not only influence electrical
conductivity but also affect the piezoelectric
characteristics of MoS,, impacting its ability to generate
electric charge in response to mechanical stress (Ataca et
al.,, 2011; Lin et al., 2014; Song et al., 2015). The
distinctive properties of the three polytype structures of
MoS; are represented in Table 1 (Srivastava et al., 2024)

Table 1: Distinctive properties among the three polytype structures of MoS: (Srivastava et al., 2024)

MoS: Properties Trigonal (1T) Hexagonal (2H) Rhombohedral (3R)
Coordination Octahedral Trigonal Prismatic Trigonal Prismatic
Space Group P3ml P63/mmc R3m
Lattice Parameters a=5.60 A, c=5.99 A, & edge- a=3.15A,c=1230 A a=3.17 A,

sharing octahedral c=18.38 A
Property Paramagnetic & Metallic Semiconducting Semiconducting
Electrical Conductivity  10° times higher than the 2H Low (~0.1 S m™!) Low (~0.1 Sm™)

phase
Band Gap 1.8-2.1 eV 1.2-1.3 eV 1.416
Absorption Peak No peak at 604 nm & 667 nm  Showed peaks at Showed peaks at

604 nm & 667 nm 604 nm & 667 nm

Symmetry Octahedral Hexagonal Rhombohedral
Stacking AbC AbABaB AbABcBCaC
Application Intercalation Chemistry Dry lubricants Dry lubricants & non-linear

optical devices
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Photothermal and Chemotherapy Applications

In recent years, there has been significant research
interest in the biomedical applications of MoS,
nanosheets, marking them as a highly promising and
innovative area of study (Lu et al, 2020). These
nanosheets offer notable advantages such as polymer
functionalization capability and high load-carrying
capacity, owing to their expansive surface area,
distinctive band gap, and atomically thin planar
structures (Li et al., 2018). Leveraging their high
sensitivity, MoS, nanosheets serve as excellent
nanoprobes for applications including cancer therapy,
optical sensing, and biomedical imaging (Li et al., 2019;
Liu et al., 2018; Zhang et al., 2018). MoS; nanosheets
exhibit remarkable photothermal conversion efficiency
within the near-infrared (NIR) region and possess strong
absorption capabilities, addressing the challenge of low
NIR radiation absorbance in biological tissues. These
properties make MoS, nanosheets ideal candidates as
NIR conversion agents for tumor photothermal therapy
(PTT), known for their minimal invasiveness and high
selectivity.
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Moreover, the exceptional photothermal conversion
efficiency and high biocompatibility of MoS; nanosheets
further enhance their suitability for PTT applications (Li
et al.,, 2019; Zhang, Wu, Williams, Niu, et al., 2019).
Photothermal therapy (PTT) serves as an alternative to
chemotherapy by converting near-infrared (NIR) light
into heat. This heat is absorbed by a photothermal
platform within the tumor and induces thermal ablation,
effectively destroying the tumor without the need for
chemical interventions. PTT offers advantages such as
enhanced local treatment efficacy and reduced systemic
side effects compared to chemotherapy. However,
challenges such as limited tissue penetration by NIR
irradiation, the potential for uneven heat distribution, and
the risk of tumor cells developing heat resistance remain
drawbacks of PTT (Chen et al., 2018; Chen et al., 2017).
To address these limitations, extensive research has
focused on nanoscale platforms, with particular attention
to materials capable of effective absorption of near-
infrared (NIR) light. These materials include copper
chalcogenides, carbon nanotubes, gold nanostructures,
graphene, and MoS,, among others (Yan et al., 2017;
Zhang et al., 2017).

PMOs-DOX@MoS -PEI-BSA.-FA

PMOs-DOX@MoS,-PEI

cell

Figure 3: Schematic illustration for the synthesis and preparation of PMOs—
DOX@MoS,-LA-PEI-BSA-FA composite as a multifunctional drug delivery
system for synergistic chemo-photothermal targeted therapy of tumors. Image
adapted from Wu et al. (Wu et al., 2018), Copyright, Elsevier Publisher, 2018.
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The concept of chemo-photothermal therapy, which
combines  photothermal  therapy (PTT)  with
chemotherapy, has gained increasing recognition due to
the potential synergistic effects of materials possessing
both PTT properties. This approach involves raising local
temperatures to directly ablate tumor cells, while the
elevated temperature promotes drug release from carriers
and enhances uptake by increasing cellular membrane
permeability (Dong et al., 2013; Liu et al., 2014). Chemo-
photothermal therapy offers the possibility of delivering
chemotherapy directly to tumors, significantly reducing
systemic side effects. Several studies have demonstrated
that chemo-photothermal therapy improves therapeutic
efficacy compared to either photothermal therapy or
chemotherapy alone (Duan et al., 2017; Wu et al., 2018).
Zhang and colleagues introduced a versatile
nanoplatform consisting of MoS, nanosheets decorated
with copper sulfide and functionalized with polyethylene
glycol (PEG). The platform exhibited an average particle
size of 115 nm and a loading capacity of 162.3 mg of
doxorubicin per gram of carrier. Controlled drug release
was achieved through near-infrared irradiation and pH
stimuli, ensuring excellent colloidal stability. Compared
to pure MoS; nanosheets, the MoS,/CuS composite
demonstrated higher photothermal conversion efficiency.
In vitro studies confirmed the biocompatibility of the
blank carrier (CuS-MoS,-SH-PEG), and its application in
synergistic chemo-photothermal therapy induced greater
cell death compared to photothermal therapy or
chemotherapy alone.

Furthermore, the nanoplatforms exhibited effective
cellular uptake by tumor cells, with enhanced uptake
observed under NIR irradiation, highlighting their
potential as an advanced nanoplatform for synergistic
chemo-photothermal therapy and responsive drug
delivery systems (Zhang, Wu, Williams, Yang, et al.,
2019). MoS,/C@SiO; nanospheres were synthesized via
hydrothermal methods for the in vitro ablation of MCF-7
cancer cells, employing a combination of synergistic
chemotherapy and photothermal approaches. The study
evaluated the photothermal effect induced by near-
infrared (NIR) light, as well as the drug loading and
release behaviors of the model drug DOX, to assess the
antitumor capabilities of both MoS,/C@SiO, and
C@SiO, nanospheres. Results indicated a significant
photothermal effect with a 42.5% conversion efficiency
for MoS,/C@SiO,, surpassing the 34.7% efficiency
observed for C@SiO,. Additionally, the drug loading
capacity of MoS,/C@SiO, (46.5%) was notably higher
than that of C@SiO, (12.4%). Under simulated acidic
tumor conditions and NIR irradiation, MoS,/C@SiO>
exhibited a higher aggregate drug release of 58.9%,
compared to 27.29% for C@SiO; (Zhao et al., 2022). A
straightforward hydrothermal method was employed to
fabricate porous MoS, nanoflowers intended for a
multifunctional theranostic platform capable of
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integrating sensitive photoacoustic (PA) imaging,
enhanced photothermal therapy (PTT), photodynamic
therapy  (PDT), and nano-enzyme  activated
chemodynamic therapy (CDT). The porous structure of
the MoS, nanoflowers facilitated improved photothermal
conversion efficiency by enhancing light trapping and
peroxidase (POD)-like activity via exposure of active
defects. This enhancement was attributed to the
abundance of active pore sites and the large surface area
of the assembled 3D-stacked MoS, nanosheets.

To encapsulate the 3D-MoS; nanostructure, a
polyethylene glycol-polyethylenimine polymer modified
with the nucleolar translocation signal sequence of the
LIM Kinase 2 protein (LNP) was utilized, forming a
stable complex via strong electrostatic interaction. This
complex efficiently delivered the anticancer drug
doxorubicin (DOX) into tumor cells for pH/NIR-
responsive chemotherapy. Additionally, the complex
exhibited strong photoacoustic and photothermal
performances and stimulated the generation of reactive
oxygen  species (ROS) for  imaging-guided
PTT/PDT/CDT combined therapy (Jiang et al., 2020). In
2021, Zhou and colleagues introduced a novel single-pot
bottom-up hydrothermal synthesis method to produce
Eu’’-doped MoS, nanoflowers for effective
photothermal/photodynamic synergistic therapy in breast
cancer treatment. The photothermal conversion
efficiency of the Mo0S,:5%Eu’" photothermal agents was
notably enhanced to 49.05%, surpassing that of pure
MoS,, when subjected to 808 nm NIR laser irradiation.
Moreover, M0S2:5%Eu®" exhibited potent photodynamic
therapy (PDT) capabilities by inducing the generation of
cytotoxic reactive oxygen species (ROS) under similar
808 nm NIR laser irradiation conditions. These
multifunctional nanoprobes demonstrated promising
potential in improving in vitro breast cancer therapy
through the combined modalities of photothermal
therapy (PTT) and photodynamic therapy (PDT) (Zhou
etal., 2021).

Cao and colleagues engineered a photodynamic
antibacterial system based on chlorin e6 (Ce6) stacked
chitosan-functionalized MoS, nanocomposites (M-CS-
Ce6). This innovative nanocomposite facilitated the
penetration of Ce6 into the cells of Gram-positive
bacteria while disrupting the cell wall permeability of
Gram-negative bacteria, thereby enhancing the photo-
antibacterial efficacy. Remarkably increased photo-
antibacterial performance was observed against both
Gram-positive and Gram-negative bacteria when 10
pg/mL of M-CS-Ce6 was irradiated by a 660 nm laser for
5 minutes, effectively eliminating the target pathogens.
M-CS-Ce6 demonstrated superior and broader-spectrum
photo-antibacterial effects compared to other cationic
photodynamic composites (Cao et al., 2022). In a similar
study, Yang and colleagues explored a multifunctional
nanoplatform based on MoS; nanosheets for drug
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delivery and chemo-photothermal therapy, specifically
targeting CD44 receptor-positive MCF-7 cells with
hyaluronic acid (HA) targeted dual-stimulation-
responsive MoS, nanosheets (HA-PEI-LA-MoS,-PEG,
HPMP). The developed HPMP nanocomposite exhibited
exceptional photothermal conversion efficiency of 55.3%
and remarkable biocompatibility, characterized by a
uniform hydrodynamic diameter of 104 nm and a higher
drug loading capacity of 944.3 mg/g HPMP. The dual
stimuli of the acidic tumor microenvironment and
external laser irradiation enabled precise control over
drug release from the HPMP@(DOX/Mel) composite,
while the photothermal effect of the MoS, nanosheets
was enhanced by loading Melanin (Mel) onto the surface.
This multifaceted MoS, nanosheet-based nanoplatform
holds significant promise for targeted drug delivery
responsive to pH and NIR stimuli, enabling synergistic
chemo-photothermal therapy for tumors (Yang et al.,
2020).

A hydrothermal method was employed to synthesize a
three-dimensional (3D) urchin-like ~ MoS,@C
nanocomposite, which exhibited impressive
characteristics, including a high photothermal conversion
capacity of 40.8%, substantial drug loading capacity for
doxorubicin (52.34%), robust absorption properties, and
excellent biocompatibility. In vitro studies demonstrated
a pH, temperature, and near-infrared laser-triggered
release profile for doxorubicin-hydro, enhancing its
therapeutic efficacy against cancer. Systemic in vitro
experiments utilizing the DOX-loaded nanoplatforms
further underscored its potential for synergistic
photothermal therapy against cancer (Zhang et al., 2020).
In 2022, Wan and colleagues introduced a versatile Z-
scheme nanocomposite composed of
Fe,O3:@MoS,@SDS, achieved by modifying sodium
dodecyl sulfate (SDS) onto the surface of Fe,O3;@MoS,
via ultrasonic treatment. This innovative composite
demonstrated dual functionalities: efficient antibiotic
degradation and suppression of antibiotic resistance gene
(ARG) dissemination. Under near-infrared (NIR)
irradiation, the Fe:O3@MoS,@SDS nanocomposite
exhibited a notable photothermal conversion efficiency
of 45.96% and generated abundant reactive oxygen
species (ROS). Through synergistic photothermal and
photodynamic  mechanisms, the nanocomposite
displayed remarkable antibacterial efficacy, achieving
eradication rates 0f 99.95%, 99.97%, and 99.58% against
E. colii MRSA, and P. aeruginosa, respectively,
showcasing its exceptional photothermal-photodynamic
therapy (PPT) capabilities (Wang et al., 2022).

A novel nanocomposite, MoS,/PDA-TPP, was designed
for dual-responsive drug delivery and synergistic chemo-
photothermal therapy targeting tumor acidity and near-
infrared radiation. Loaded with doxorubicin (DOX), this
nanoplatform takes advantage of the tumor-specific
mitochondria accumulation ability and photothermal
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therapy (PTT) for enhanced anti-tumor efficacy. The pH-
responsive dissociation of MoS,/PDA-TPP triggers rapid
DOX release in the acidic tumor microenvironment
(TME), amplifying the effectiveness of PTT.
Furthermore, the mechanism involves MoS,/PDA-TPP
inducing  mitochondrial-dependent  apoptosis by
generating reactive oxygen species (ROS) and reducing
mitochondrial membrane potential (MMP) (Zhang et al.,
2022). Saravanan and colleagues investigated enhanced
cytotoxicity in cancer chemo-photothermal therapy using
MoS; nanoflowers decorated with CeO, nanoparticles as
nanozyme-controlled photothermal agents. They found
that nanoflowers decorated with long-chain PEI
molecules exhibited superior photothermal heat
generation compared to those decorated with low
molecular weight PEI. Factors such as the concentration
of nanozymes, duration of near-infrared (NIR) light
exposure, power density of NIR light, and folic acid (FA)
conjugation significantly influenced the
biocompatibility, photothermal heat generation, and anti-
cancer activity of the nanozymes. This study underscores
the potential of nanozymes as promising candidates for
nanophotothermal agents in cancer photothermal therapy
(Saravanan et al., 2023).

A confined solvothermal technique was utilized to
fabricate a porous silica nanosystem loaded with MoS..
The ultrasmall MoS, nanoclusters and abundant porous
sites contributed to the maximum photothermal
efficiency of 79.5% exhibited by the MoS,@P-SiO;
nanosystem. In vitro and in vivo studies of glucose
oxidase (GOD) loaded onto the cascade hybrid system
(MoS»/GOD@P-Si0,) demonstrated a remarkable
tumor-suppressive effect and excellent biosafety through
the combined impacts of photothermal and enzyme-
mediated cascade catalytic therapy. The integration of a
hybrid porous network system, an in situ solvothermal
approach for inorganic functional components, and
effective  encapsulation of  organic  enzyme
macromolecules offer a promising approach for the
construction of synergistic agents for the efficient and
safe treatment of tumors (Song et al., 2022). Recently,
Dual tumor and subcellular-target photodynamic therapy
were reported by Xu et al., using glucose-functionalized
MoS; nanoflakes to combat multidrug-resistant (MDR)
cancer. The MoS; nanoflakes were functionalized with
glucose-modified hyperbranched polyglycerol (hpG) to
construct the nanoplatforms and thereafter loaded with
organelle-targeting PDT agents. The resultant
nanoplatforms significantly enhance internalization
within multidrug-resistant (MDR) cells and precisely
localize PDT agents subcellularly. This facilitates in situ
near-infrared (NIR)-triggered reactive oxygen species
(ROS) generation, augmenting photodynamic therapy
(PDT) and reversing MDR. The approach has
demonstrated impressive tumor shrinkage in a HelLa
multidrug-resistant  tumor mouse model.  This
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nanoplatform, with its NIR-responsive properties and
ability to target tumors and subcellular organelles,
presents a promising strategy for the effective treatment
of multidrug-resistant (MDR) cancer (Xu et al., 2022).
In a light-driven antibacterial activity, Liu et al., reported
a facile hydrothermal technique to synthesize silver
sulfide/molybdenum disulfide/palygorskite
(Ag2S/MoS,/Pal) nanocomposites for light-driven
antibacterial study. The Ag,S/MoS,/Pal nanocomposites
demonstrated excellent antibacterial activity under
various lighting conditions. The minimum inhibitory
concentrations (MICs) of these nanocomposites against
Escherichia coli (E. coli) and Staphylococcus aureus (S.
aureus) were 0.3 mg/mL and 0.5 mg/mL, respectively.
Additionally, Ag>S/MoS,/Pal nanocomposites exhibit an
exceptional photothermal effect. The synergistic
combination of physical puncture, photodynamic, and
photothermal effects results in rapid bacterial death. The
enhanced antibacterial performance is attributed to the
increased active centers and efficient interfacial carrier
transfer. This study opens new avenues for the
development of advanced functional clay materials to
address the growing bacterial resistance issue (Liu et al.,
2022).

In a related study, Lai et al. utilized a hydrothermal
method to synthesize a silver indium sulfide/nickel
molybdenum sulfide (AgInS,/NiMoS4) nanostructure,
which was then decorated on Palygorskite (Plg) to
achieve synergistic light-driven antibacterial
performance. The composite (AgInS»/NiMoS4/Plg) was
evaluated for its antibacterial activity under light
exposure and its ability to detect uric acid in biological
samples. The results showed that AgInS,/NiMoS4/Plg
exhibited the highest antibacterial activity with minimum
inhibitory concentrations of approximately 0.2-0.3
mg/mL. Additionally, the composite demonstrated
enhanced peroxidase-like activity for uric acid detection,
with a detection limit of around 26.1 nM. These findings
suggest that AgInS,/NiMoS4/Plg composites have
potential applications in bactericidal processes and
sensing in complex biological systems (Lai et al., 2022).
Owing to its outstanding photothermal conversion
ability, functionalized MoS;-nanosheets were reported
for targeted drug delivery and chemo-photothermal
treatment by Zhang et al., 2019. A nanoplatform-based
folic acid (FA) targeted dual-stimuli responsive MoS,
was employed for the FA-receptor positive human breast
cancer therapy. The obtained nanocomposites had a
uniform diameter (ca. 133 nm) and could be easily loaded
with the anti-cancer drug doxorubicin (DOX) to a high
capacity of 151.4 mg/g. It was found that drug release is
enhanced under near-infrared (NIR) laser irradiation,
demonstrating that the composites can be used as dual-
responsive systems, with DOX release controllable
through pH changes or NIR irradiation. The platform also
enabled the combination of chemotherapy and
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photothermal therapy, resulting in synergistic effects
superior to monotherapy alone. The functionalized MoS,
nanoplatforms developed could thus be a potent system
for targeted drug delivery and synergistic chemo-
photothermal cancer therapy (Zhang, Wu, Williams, Niu,
etal., 2019).

In search of a multifunctional platform for synergistic
targeted chemo-photothermal treatment, a functionalized
MoS,  nanosheet-capped  periodic =~ mesoporous
organosilica was used as a capping agent to block PMOs
to control the drug release and to investigate their
potential in near-infrared photothermal therapy. The
resulting PMOs—-DOX@MoS,-PEI-BSA-FA complexes
exhibited a uniform diameter of 196 nm, a high DOX
loading capacity of 185 mg/g PMOs-SH, excellent
photothermal  conversion efficiency, and good
biocompatibility under physiological conditions. In vitro,
experimental results confirmed that the material exhibits
excellent photothermal conversion ability, outstanding
tumor-killing efficiency, and specific targeting of tumor
cells via an FA-receptor-mediated endocytosis process.
In vivo experiments further demonstrated that the
platform for synergistic chemo-photothermal therapy
significantly inhibits tumor growth, outperforming any
monotherapy (Wu et al., 2018). In a separate study, Lei
et al. proposed a photothermal-enhanced photo-Fenton
pollutant degradation approach to address the limitations
of relatively low catalytic activity and cycling stability in
the Fenton reaction. They developed hybrids of
magnetically recyclable 1T-2H MoS,/Fe3O4, which
exhibited excellent photothermal conversion efficiency.
These hybrids not only increased the reaction
temperature of the Fenton reaction on the material
surface but also demonstrated effective interfacial
photothermal water evaporation efficiency. Due to the
synergistic effect of photocatalysis and the photo-Fenton
catalytic reaction, simulated pollutants were rapidly
degraded within 5 minutes, achieving a 98.3%
degradation rate, which could be further improved to
99% with photothermal promotion. The 1T-2H
MoS»/Fe3;04 hybrids also showed good magnetic
recyclability, cyclic stability, and photothermal
performance, making them promising for applications in
environmental remediation and photothermal interface
water evaporation (Lei et al., 2023).

The study investigated multifunctional MoS,-based
nanoplatforms designed for the co-delivery of erlotinib
(Er) and doxorubicin (DOX), enabling controlled drug
release  for effective synergistic  photothermal
chemotherapy. Initially, Er was loaded onto MoS;
nanosheets through click chemistry with a PEG linker,
followed by incorporation with DOX. The resulting
MoS,-PEG-Er/DOX nanocomposite converted absorbed
near-infrared (NIR) light into heat, facilitating the
controlled release of DOX and inducing photothermal
ablation of cancer cells. Notably, upon NIR irradiation,
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MoS,-PEG-Er/DOX achieved synergistic photothermal
chemotherapy, significantly inhibiting tumor growth in
lung cancer cell-bearing mice. This study highlights the
excellent antitumor efficacy of MoS,;-PEG-Er/DOX,
offering a promising strategy for clinical cancer treatment
(Liu et al., 2020).

To enhance cancer photothermal therapy (PTT),
Rajasekar et al. reported on the development of a 2D
nanomaterial specifically designed for targeted
photothermal treatment, which efficiently kills cancer
cells while sparing normal cells. They prepared chitosan-
coated MoS; nanosheets combined with tantalum oxide
nanomaterials through electrostatic interactions to
improve PTT efficacy. Detailed studies showed that the
Ta0,-CS-MoS, nanomaterial exhibited no toxicity,
excellent photostability, and an increase in photothermal
conversion efficiency (PCE) from 26°C to 47.2°C under
808 nm irradiation for 5 minutes. The deposition of TaO,
significantly enhanced the photostability,
biocompatibility, and PCE of the MoS; nanosheets. This
innovative approach is highly anticipated to improve the
biological features of cancer PTT (Rajasekar et al., 2020).
Various studies have demonstrated that the transdermal
drug delivery system (TDDS) is an effective non-
invasive method with numerous advantages. Zhang et al.
first reported using CPAM-MoS; nanoparticles (NPs) as
drug carriers in TDDS. They employed a simple
hydrothermal technique to develop polyacrylamide-
modified MoS, nanoparticles (CPAM-MoS, NPs) for
controlled drug release and prolonged treatment duration
via light stimulation. An in vivo skin erythema study
confirmed the biocompatibility and skin safety of the
colloid-stable CPAM-MoS; NPs, showing a high drug
load efficiency of 87.2% and excellent photothermal
conversion efficiency, successfully applied in TDDS
with an enhancement ratio of 1.82. The in vitro skin
penetration test demonstrated the controlled release
capacity, with no drug depletion observed during the 8-
hour study under light stimulation (Zhang et al., 2020).
A traceable and pH-responsive drug delivery system
based on PEGylated MoS, quantum dots (QDs) was
successfully developed, incorporating the fluorescent
antineoplastic anthracycline drug, doxorubicin (DOX).
The functionalized PEGylated MoS, QDs endowed the
nanocomposite with strong blue photoluminescence, low
cytotoxicity, and excellent physiological stability. It was
observed that the MoS,-PEG-DOX nano-assembly could
be efficiently taken up by U251 cells, with accelerated
DOX release triggered by intracellular acidic conditions.
This targeted release diminishes the unwanted side
effects of DOX on healthy cells. The findings suggest
that MoS,-PEG-DOX has the potential for high treatment
efficacy with minimal side effects in future therapies (Liu
et al., 2020). In another development, a regenerated silk
fibroin/molybdenum disulfide (RSF/MoS,) nanoparticle
hybrid fiber was prepared via wet spinning with varying
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concentrations of MoS, nanoparticles. The 2wt%
RSF/MoS, nanoparticle hybrid fibers demonstrated a
temperature increase from 20.0°C to 81.0°C in 1 minute
and to 98.6°C in 10 minutes under simulated sunlight.
This indicates good thermal stability and excellent
photothermal properties for fabrics created through
manual blending. This novel approach presents a method
for preparing high-toughness, photothermal property
fibers suitable for multifunctional applications (Guo et
al., 2021).

Prospects and Challenges

MoS: demonstrates broad applicability across
electronics, biomedicine, catalysis, and environmental
remediation due to its versatile structural, optical, and
photothermal properties. Its effectiveness in drug
delivery, photothermal therapy, imaging, and
antibacterial applications highlights its value as a
multifunctional nanomaterial. These advantages
underscore MoS:’s strong potential for next-generation
biomedical and environmental technologies.

However, several gaps remain in the literature. Scalable
synthesis methods capable of producing uniform MoS:
structures with  consistent properties are  still
underdeveloped. The long-term stability, toxicity, and
biodegradation pathways of MoS: nanomaterials in
physiological and ecological environments require
deeper investigation. In addition, translational studies
evaluating pharmacokinetics, Dbiodistribution, and
clinical safety remain limited. Comparative studies with
other emerging 2D materials are also needed to clarify
unique  advantages and optimize = MoS:-based
architectures. Addressing these gaps will be essential to
fully realize the practical and clinical potential of MoS:
in advanced technological applications.

CONCLUSION

MoS:; has been shown to have applications across various
disciplines, including electronics, enzymes, biomedicine
(such as patchable and implantable devices), and energy.
It also holds potential for environmental applications.
Historically, bulk MoS; has been recognized for its utility
as an environmental catalyst and adsorbent, occurring
naturally as the abundant mineral molybdenite. Although
current publications indicate that the synthetic routes for
MoS; are simple and cost-efficient, more innovative
approaches are needed to scale up synthesis techniques
for real-world applications. Studies have shown that the
synthesis and assembly processes significantly influence
the structure, properties, and potential applications of
MoS;-based nanocomposites. Efficient, reliable, and
affordable anti-cancer therapy approaches are crucial for
improving the quality of life and extending the lifespan
of people worldwide. Nanoparticle-based techniques,
including those utilizing nanostructured MoS,, offer
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promising methods for targeting cancer cells and could
be applied in various environments.

The unique mechanical and photothermal properties of
MoS; enhance functionality in drug delivery systems.
MoS; quantum dots (QDs) exhibit a direct bandgap and
high biocompatibility, leading to diverse applications.
MoS;'s versatility extends to its use as an antibacterial
agent, in photodynamic therapy, and synergistic chemo-
photothermal activities. MoS; nanosheets demonstrate
remarkable photothermal conversion efficiency within
the near-infrared (NIR) region and strong absorption
capabilities, addressing the challenge of low NIR
radiation absorbance in biological tissues. These
properties make MoS, nanosheets ideal candidates for
tumor photothermal therapy (PTT), known for their
minimal invasiveness and high selectivity. Furthermore,
MoS; nanocomposites show promise for high treatment
efficacy with minimal side effects in anti-cancer therapy,
drug delivery, and medical imaging, offering key
advantages and opportunities over other similar materials
and nano-architectures.
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