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ABSTRACT 

This study presents a provably secure asymmetric encryption scheme designed for 

optimal efficiency. A transmitter utilizes a 𝑘-bit one-way invertible function 𝑓 to 

encode a message 𝑥 for a receptor holding the inverse 𝑓−1. The construction 

ensures that encryption requires only a single computation of 𝑓, decryption 

requires only a single computation of 𝑓−1, the ciphertext length is exactly 𝑘 bits, 

and the permissible message length 𝑛 is nearly 𝑘. The method employs a 

probabilistic encoding of 𝑥 into a string 𝑟𝑥, with the ciphertext given by 𝑓(𝑟𝑥). 

Under the assumption of industry-standard compression function with any one-

way invertible function, we describe and rigorously prove the security of this 

invertible enmesh scheme. The scheme is bit-optimal, allowing for the encryption 

of messages of length close to 𝑘, and achieves semantic security—a strong notion 

that implies security against chosen-ciphertext attacks (CCA) and non-

malleability in the standard-hash model. 

 

INTRODUCTION 

Public-key cryptography, introduced over four decades 

ago, is built upon an established primitive: the open-key 

enables encoding, the corresponding secret-key 

facilitates decoding (Bernstein & Lange, 2023). The 

principal challenge, however, lies in constructing 

protocols that protect communications from adversaries 

on vulnerable networks. This must be achieved without 

secure key distribution a priori and while serving a large, 

diverse user base (Chakraborty & Sánchez, 2024; 

Albrecht et al., 2021). 

Our research directly addresses the challenge raised in 

Albrecht et al. (2021) by providing a bit-optimal, 

provably secure construction that can be instantiated with 

any trapdoor permutation, including those being 

standardized for post-quantum security. By minimizing 

computational and bandwidth costs, our scheme offers a 

pathway to mitigate the performance penalties 

anticipated in the quantum-safe migration, ensuring that 

strong, forward-looking encryption remains practical for 

widespread deployment. 

A fundamental tension therefore exists between provable 

security and practical efficiency. While heuristic 

schemes satisfying strict efficiency constraints exist 

(Boneh & Corrigan-Gibbs, 2021; Gentry & Halevi, 

2021), they often lack formal security guarantees. 

Conversely, provably secure alternatives often violate 

these practical constraints—for instance, by requiring 

two applications of the core function or producing 

ciphertexts significantly longer than the security 

parameter. This gap forces practitioners to choose 

between rigorous security and operational feasibility, 

often opting for the latter. Achieving real-world impact, 

therefore, necessitates the development of schemes 

secure under standard assumptions that also satisfy these 

efficiency goals. 

This work directly addresses this tension. We examine a 

scenario directly relevant to cryptographic practice, 

where a transmitter uses a 𝑘 -bit one-way invertible 

function 𝑓 to encrypt a message for a receptor holding the 

inverse 𝑓 ⁻¹. The practical requirements for such a 

scheme are stringent: encryption should require only a 

single computation of 𝑓, decryption only a single 

computation of 𝑓 ⁻¹, the ciphertext length should be 

precisely 𝑘 bits, and the permissible plaintext length 𝑛 

should be as close to 𝑘 as possible. 

A common heuristic design pattern involves 

probabilistically and invertibly embedding a plaintext 𝑥 

into a string 𝑟𝑥 of length 𝑘, such that the encryption is 

given by 𝑓(𝑟𝑥). We formalize this process as an invertible 

enmesh scheme and provide the first construction that is 

simultaneously bit-optimal and provably secure under 

standard assumptions. Our scheme ensures that the 
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recoverable plaintext length is nearly 𝑘, bridging the gap 

between heuristic efficiency and demonstrable security. 

Goldwasser and Micali (1984) introduced the notion of 

probabilistic encryption and semantic security. While 

foundational, their scheme was highly inefficient. Bellare 

and Rogaway (1994) proposed a provably secure Optimal 

Asymmetric Encryption Padding (OAEP) scheme based 

on RSA. However, OAEP has a ciphertext length of 𝑘 +
 𝑘0 bits for a 𝑘-bit modulus and a 𝑘0-bit seed, and its 

encryption requires two evaluations of the underlying 

trapdoor function in the Feistel network. This violates the 

strict bit-optimality goals of our scheme, which demands 

a ciphertext of exactly 𝑘 bits and a single function 

evaluation. 

Boneh and Corrigan-Gibbs (2021) explored fast-

verifying protocols, emphasizing the critical importance 

of low computational overhead for real-world adoption. 

Similarly, Gentry and Halevi (2021) and Gentry et al. 

(2021) have focused on optimizing complex 

cryptographic operations like those in fully 

homomorphic encryption and key wrapping. While their 

goals align with ours in seeking efficiency, their 

constructions and security models are tailored for 

different applications and do not achieve the same level 

of bit-optimality for basic public-key encryption from 

generic trapdoor permutations. 

Theoretically, schemes achieving "length-preserving" 

properties have been proposed, but often at the cost of 

stronger assumptions or weaker security notions. Our 

work directly addresses this gap by demonstrating that 

under the standard one-wayness assumption of the 

trapdoor permutation and the random oracle model, bit-

optimality is achievable without compromising on a 

strong, provable security notion like semantic security. 

Agrawal and Pellet-Mary (2022) and Chase et al. (2022) 

have advanced our understanding of the notion of 

Indistinguishability under Chosen-Ciphertext Attack 

(IND-CCA) and the techniques to achieve them. A key 

contribution of our work is demonstrating that the 

achieved semantic security within the random oracle 

model implies these stronger properties (CCA security 

and non-malleability) for our specific construction. This 

aligns with the broader understanding that a tightly 

proven, strong semantic security guarantee in a robust 

model can often be the foundation for higher-level 

security. 

The primary motivation for this research is to enable the 

next generation of high-performance cryptographic 

applications where both bandwidth and computational 

overhead are critical constraints.  By ensuring "bit-

optimal" encryption—where ciphertexts are no larger 

than the security parameter and encryption/decryption 

require only a single function call—this scheme offers a 

major efficiency breakthrough. In fields such as secure 

real-time communication, lightweight IoT device 

security, and large-scale data encryption in the cloud, the 

ability to perform strong, provably secure asymmetric 

encryption with minimal latency and data expansion is 

not merely an optimization—it is a fundamental 

requirement for practical deployment. By achieving bit-

optimality without compromising on provable security, 

this work provides a foundational primitive that can help 

make strong cryptography more scalable and efficient for 

broad, real-world use. 

 

Our Contributions 

This work bridges the gap between heuristic efficiency 

and provable security by introducing a novel public-key 

encryption scheme. Our primary contributions are 

threefold: 

 

Bit Optimality: We present a construction that, for the 

first time under standard assumptions, simultaneously 

achieves 

i. A single evaluation of the one-way function 𝑓 for 

encryption and a single evaluation of 𝑓−1 for 

decryption. 

ii. A ciphertext size that is exactly 𝑘-bits long, 

matching the security parameter. 

iii. A permissible plaintext length 𝑛 that is nearly 𝑘, 

specifically 𝑛 = 𝑘 − 𝑘0. 

Provable Security: We formalize the construction as an 

invertible enmesh scheme and provide a rigorous security 

proof in the ideal hash function paradigm. We 

demonstrate that our scheme achieves semantic security, 

which in our model implies security against chosen-

ciphertext attacks (CCA) and non-malleability. 

Concrete Security Reduction: We go beyond asymptotic 

claims by providing a tight, concrete security reduction 

(Theorem 3.1) to the one-wayness of the underlying 

trapdoor permutation. This allows for meaningful 

security guarantees for practical parameter sizes 

(e.g., 𝑘 = 1024). 

 

MATERIALS AND METHODS 

Design and Implementation 

Basic Cryptographic Primitives 

We present in this section the main primitives employed 

in the design and analysis of our proposed scheme. 

Nondeterministic Procedures: The notation established 

in Vadhan (2023) is hereby employed. For a 

nondeterministic procedure 𝑃, the expression  𝑃(𝑥, 𝑦,⋯ ) 

denotes the random distribution over the output 

sequences, where the probability mass assigned to a 

sequence σ equals 𝑃𝑟[𝑃(𝑥, 𝑦,⋯ ) = 𝜎]. The support of a 

random distribution 𝑆 is denoted [𝑆]. The notation 𝑥 ← 𝑆 

indicates sampling an element from 𝑆. Sequential 

sampling is abbreviated as (𝑥, 𝑦) ← 𝑆. For random 

distribution (𝑆, 𝑇,⋯ ), 𝑃𝑟[𝑥 ← 𝑆, 𝑦 ← 𝑇,⋯ , 𝑝(𝑥, 𝑦,⋯ )] 
implies a success advantage after the ordered sampling. 

PPT denotes probabilistic polynomial time. Oracle 

queries are assumed to require unit time. 
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Random Oracles: We consider schemes utilizing 

functions selected uniformly from appropriate spaces 

according to Durak and Vaudenay (2023). Let Ω denote 

the set of all functions from {0, 1}∗ to {0, 1}∞. The 

notation 𝐼, 𝐶 ← Ω indicates random selection from Ω, 

with the understanding that the domain and range are 

restricted contextually. For instance, if 𝐼 is specified as 

mapping {0, 1}𝑎 to {0, 1}𝑏, then 𝐼 ← Ω implies restriction 

to the specified domain and truncation to the first 𝑏 

output bits. 

One-way Invertible Functions: Our construction requires 

a one-way invertible functions initiator —a 

nondeterministic polynomial-tine procedure which 

produces 𝑓 and its inverse 𝑓−1 The evaluation time 𝑡 of 

𝑓 is defined as the maximum time required to compute 

𝑓(𝑥) for any valid input 𝑥, which may depend on the 

computational environment. The security of a non-

uniform adversary 𝑃 is characterized by the execution-

time and advantage in inverting 𝑓. 

Definition 1: An algorithm 𝑃(𝑡, 𝜖)-inverts a one-way 

invertible function initiator 𝐼 if 
[𝑃𝑟[(𝑓, 𝑓−1) ← 𝑃, 𝑥 ← Domain(𝑓), 𝑦 ←

𝑃(𝑓, 𝑓(𝑥), 𝑓−1)(𝑦) = 𝑥] ≥ 𝜀]  (1)  

and 𝑃 runs in time at most 𝑡. 

The function described in Micciancio and Walter (2023) 

constitutes a candidate secure one-way invertible 

function. 

 

Proposed Encryption Scheme Based on Trapdoor 

Permutations 

Let 𝑘 denote the resilience strength, and 𝑓 a one-way 

invertible function mapping {0,1}𝑘 to {0,1}𝑘. 

Furthermore, take 𝑘0 as a secondary resilience limit set 

to guarantee that any adversary with a run-time of 𝑜(2𝑘0) 

has negligible advantage. The plaintext message length is 

set to 𝑛 = 𝑘 − 𝑘0 bits; messages shorter than 𝑛 bits can 

be padded to this length using a suitable encoding 

scheme. 

The encryption scheme utilizes two cryptographic 

primitives: a pseudorandom key initiator 𝐼: {0,1}𝑘0 →
{0,1}𝑛 and a cryptographic compression utility 

𝐶: {0,1}𝑛 → {0,1}𝑘0 . 

Let 𝐼 be a pseudorandom key initiator and 𝑘0 ∶  ℕ → ℕ a 

function such that 𝑘0(𝑘) ≥ 1; ∀ 𝑘 ≥ 1. The encryption 

scheme Π parameterized by 𝐼 and 𝑘0(∙) has a mapping 

and plaintext of size 𝑛(𝑘). On input 1𝑘 , the initiator runs 

𝐼(1𝑘) to obtain (𝑓, 𝑓−1) and returns 

encryption/decryption algorithms (ℰ, 𝒟) defined as 

follows: 

 
Note that in the operations above, 𝑟 is a random value 

selected in {0,1}𝑘0 , ⨁ represents bitwise XOR operation 

and || denotes concatenation. 

Here, 𝐼 and 𝐶 are random oracles with appropriate input 

and output lengths. 

Selecting appropriate values for the security parameter 𝑘, 

the secondary resilience limit 𝑘0, (𝑙 = 𝑘0) and the 

plaintext length 𝑛 is crucial for achieving both security 

and efficiency in practice. The fundamental relationship 

governing these parameters is 𝑛 = 𝑘 − 𝑘0. This means 

the choice of 𝑘0 directly trades off between the level of 

security and the amount of data that can be encrypted in 

a single block. For example,  

i. Using 2048-bit RSA: 𝑘 = 2048, 𝑘0 = 128 (a 

standard, strong choice for brute-force resistance) 

Resulting Plaintext Capacity: 𝑛 = 2048 − 128 =
1920 bits (or 240 bytes). 

Use Case: This is sufficient to directly encrypt a 

256-bit AES key along with metadata, or to 

efficiently encrypt a typical session key and a 

message authentication code. The ciphertext is a 

single 2048-bit block. 

ii. Using 1024-bit RSA (for illustrative purposes): 𝑘 =
1024, 𝑘0 = 128. 

Resulting Plaintext Capacity: 𝑛 = 1024 − 128 =
896 bits (or 112 bytes). 

Use Case: While 1024-bit RSA is deprecated for 

most uses, this example shows the trade-off: a 

smaller ciphertext (1024 bits vs. 2048) but a 

significantly reduced payload capacity (112 bytes 

vs. 240). 

iii. Optimizing for Maximum Payload: If the primary 

goal is to maximize the amount of data encrypted 

per invocation, one might choose a smaller 𝑘0. For 

example, with 𝑘 = 2048, setting 𝑘0 = 80 would 

allow 𝑛 = 1968 bits of plaintext. However, this 

reduces the brute-force resistance to 280 operations, 

which, while still formidable, may not be 

Encryption ℰ(𝑥) : For 𝑥 ∈ {0,1}𝑛(𝑘): 

Sample 𝑟 ← {0,1}𝑘0(𝑘) 

Compute 

𝑠 = 𝑥 ⊕ 𝐼(𝑟), 

𝑡 = 𝑟 ⊕ 𝐶(𝑠), 

𝑤 = 𝑠‖𝑡 and, 

Output 𝑦 = 𝑓(𝑤) 

Decryption 𝒟(𝑦): For 𝑦 ∈ {0,1}𝑘: 

Compute 

𝑤 = 𝑓−1(𝑦) 

Parse 

𝑤 as 𝑠 ∈ {0,1}𝑛(𝑘) and, 

𝑡 ∈ {0,1}𝑘0(𝑘) 

Compute 

𝑟 = 𝑡 ⊕ C(𝑠), 

Output 𝑥 = 𝑠 ⊕ 𝐼(𝑟) 
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considered sufficient for long-term security against 

well-funded adversaries. 

 

A Concrete Instantiation of the Encryption Scheme 

We hereby present a concrete implementation of the 

proposed encryption scheme, instantiating the underlying 

primitives. The one-way invertible function is realized 

via the RSA function (Katz & Lindell, 2020), defined as 

𝑓(𝑥) = 𝑥𝑒  𝑚𝑜𝑑 𝑁; 𝑁 being a 𝑘-bit composite number, 

with 𝑝 and 𝑞 being big, indivisible numbers and 

gcd(𝑒, 𝜙(𝑁)) = 1. The security parameter satisfies 𝑘 ≥

1024, though larger values are recommended. The 

functions 𝐼 and 𝐶 are constructed from the reviewed SHA 

standard (NIST, 2023 FIPS 180-5), though other 

cryptographic hash functions like NIST (2023), FIPS 204 

are also suitable. 

Let the domain 𝐷 = {𝑖 ∈ ℤ𝑁
∗ } ⊆ {0, 1}𝑘 denote the set of 

valid inputs to 𝑓. The scheme encrypts messages 𝑚𝑠𝑔 of 

length at most 𝑘 − 320 bits, permitting, for instance, the 

encryption of three 192-bit keys at the minimal security 

level. The encryption process is probabilistic and 

depends on: 

The message 𝑚𝑠𝑔, 

A randomness sequence 𝑟𝑎𝑛𝑑_𝑐𝑜𝑖𝑛𝑠, 

𝑘, the protocol constraint 

𝑓, the transformation mapping 

A Boolean expression 𝐼𝑁𝐷(𝑥) that returns 𝑡𝑟𝑢𝑒 iff 𝑥 ∈
𝐷, 

A 4-byte attribute 𝑘𝑒𝑦_𝑑𝑎𝑡𝑎 (usage unspecified), 

A descriptor string 𝑑𝑒𝑠𝑐 encoding the function 𝑓. 

Let SHA𝜎(𝑥) denote the 20-byte output of the SHA 

compression function with initial chaining value 𝜎, and 

let SHA𝜎
ℓ (𝑥) denote its first ℓ bits. Let 〈𝑖〉 represent the 

32-bit binary encoding of 𝑖. The function 𝐶𝜎
ℓ(𝑥) is 

defined as the ℓ-bit prefix of the concatenation: 

SHA𝜎
80(〈0〉‖𝑥)‖SHA𝜎

80(〈1〉‖𝑥)‖SHA𝜎
80(〈2〉‖𝑥)‖ 

     (2) 

Assume 𝑘0 is a predefined, uniformly random 20-byte 

character sequence. 

The encryption procedure, detailed in the pseudocode 

below, proceeds as follows. 

The message 𝑚𝑠𝑔 is augmented with its length, 128 bits 

of redundancy, the 𝑘𝑒𝑦_𝑑𝑎𝑡𝑎 field, and padding to form 

a string 𝑥 of length 𝑘 − 128 bits. 𝑥 is now encoded with 

a 16-byte string 𝑟. The algorithm iteratively generates 

𝑟𝑥 = 𝑥̅‖𝑟̅ until 𝐼𝑁𝐷(𝑟𝑥) holds, finally outputting 𝑓(𝑟𝑥). 

 

Algorithm 1: Pseudocode for our Encryption Routine 
function ENCRYPT(𝑚𝑠𝑔, 𝑟𝑎𝑛𝑑_𝑐𝑜𝑖𝑛𝑠) 
𝜎 ← SHA𝑘0

(𝑑𝑒𝑠𝑐) 

𝜎1 ← SHA𝜎  (〈1〉) 

𝜎2 ← SHA𝜎  (〈2〉) 
𝜎3 ← SHA𝜎  (〈3〉) 
𝑖 ← 0 

do 

𝑟 ← 𝐶𝜎1
(128)

(〈𝑖〉‖𝑟𝑎𝑛𝑑_𝑐𝑜𝑖𝑛𝑠 ) 

𝑥 ← 𝑘𝑒𝑦_𝑑𝑎𝑡𝑎‖𝑥) ‖〈|𝑚𝑠𝑔|〉 ‖0128 ‖0𝑘−320−|𝑚𝑠𝑔|‖𝑚𝑠𝑔 

𝑥̅ ← 𝑥 ⊕ 𝐶𝜎2
(|𝑥|)

 (𝑟) 

𝑟̅ ← 𝑟 ⊕ 𝐶𝜎3
(128)

 (𝑥̅) 

𝑟𝑥 ← 𝑥̅‖𝑟̅ 

𝑖 ← 𝑖 + 1 

while 𝐼𝑁𝐷 (𝑟𝑥) = true 

output 𝑓(𝑟𝑥) 

 

The core of the encryption process is the probabilistic 

encoding of the message into a string 𝑟𝑥 that is a valid 

input for the one-way function 𝑓. This is achieved 

through an iterative loop that repeatedly randomizes the 

encoding until a specific mathematical condition is met. 

For example, Assume a simplified scenario where the 

validity condition 𝐼𝑁𝐷(𝑟𝑥) is that the first two bits of 𝑟𝑥 

must be different. The process would work as follows: 

Iteration 1: Generate 𝑟𝑥
(1). Its first two bits are `11`. 

Condition false. Increment 𝑖. 
Iteration 2: Generate 𝑟𝑥

(2). Its first two bits are `00`. 

Condition false. Increment 𝑖. 
Iteration 3: Generate 𝑟𝑥

(3). Its first two bits are `01`. 

Condition true. 

Output: The ciphertext is 𝑓(𝑟𝑥
(3)). 

This iterative process ensures that the final input to 𝑓 is 

both a properly encoded version of the message and a 

mathematically valid input for the trapdoor permutation, 

all while requiring only a single evaluation of 𝑓 in the 

successful iteration. 

 

RESULTS AND DISCUSSION 

Performance Evaluation 

Computational Effectiveness 

We make use of a suitably invertible one-way function 𝑓. 

Under these instantiations, the computational overhead 

of evaluating the functions 𝐼 and 𝐶 is orders of magnitude 

smaller than the cost of evaluating 𝑓 or its inverse 𝑓−1. 

Consequently, the hardness of our protocols is 

investigated solely in terms of the number of 𝑓 and 𝑓−1 

evaluations. In this context, the proposed encryption 

algorithm requires only one calculation of 𝑓, and 𝑓−1 

respectively for encryption and decryption. The 

ciphertext length is 𝑘 bits, provided 𝑘 ≥ 𝑛 + 𝑘0 + 𝑘1. 

 

Assessment of the Concrete Security of the Scheme 

To ensure practical relevance, our security analysis 

provides meaningful guarantees for specific parameter 

values (e.g., 𝑘 =  1024). This requires a concrete 

security framework that avoids purely asymptotic 

statements and strives for efficient security reductions. 

The security theorem for the designed scheme, presented 

below, formalizes our approach. It considers an adversary 

with time bound 𝑡, making 𝑞𝑖𝑛 queries to 𝐼 and 𝑞𝑐𝑜𝑚 

queries to 𝐶, who achieves an advantage 𝜖 in breaking the 

scheme. The theorem then constructs an algorithm 𝑃 that 
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inverts the underlying one-way invertible function 𝑓 in 

time 𝑡′ with probability 𝜖′, where 𝑡′ and 𝜖′ are explicit 

functions of 𝑡, 𝑞𝑖𝑛, 𝑞𝑐𝑜𝑚, 𝜖, and the parameters 𝑘, 𝑙, 𝑛, 

(𝑙 = 𝑘0, 𝑘 = 𝑙 + 𝑛). The quality of the reduction is 

determined by the tightness of these relationships. 

Consequently, given the conjectured hardness of a 

specific 𝑓 (such as 1024-bit RSA), we derive concrete 

bounds on the resources required to compromise the 

proposed encryption scheme. 

The following Theorem provides a tight reduction to the 

hardness of inverting 𝐹 for our designed 

scheme.Theorem 3.1. Let Π represent the encoding 

protocol defined above having attributes 𝐹, 𝑘0 and a 

mapping with plaintext of size 𝑛(𝑘). There exists a 

procedure 𝑈 with a random query access and a value 𝜆 

such that for every integer 𝑘, if a challenger 𝐸 
(𝑡, 𝑞𝐼 , 𝑞𝐶 , 𝜖)-breaks Π, then  

𝑃 = 𝑈𝐸  (𝑡 ;, 𝜖 ;)-inverts 𝐹   (3) 

𝑡′ = 𝑡 + 𝑞𝐼 ∙ 𝑞𝐶 ∙ (𝑇𝑓(𝑘) + 𝜆𝑘)  (4) 

𝜖′ ≥ 𝜖 ∙ (1 − 𝑞𝐼 ∙ 2−𝑘0 − 𝑞𝐶 ∙ 2−𝑛) − 𝑞𝐼 ∙ 2−𝑘 

     (5) 

Here, 𝑇𝑓(𝑘) denotes the time to evaluate 𝑓. 

Proof: 

The Core Idea: The security of the scheme relies on the 

fact that for the adversary to gain any advantage in the 

semantic security game, it must have queried 𝐼 and 𝐶 on 

the specific inputs 𝑟 and 𝑠 used to create the challenge 

ciphertext. If it never makes these queries, the message 

𝑥𝑏 is perfectly hidden by the one-time-pad-like properties 

of the XOR operations with 𝐼(𝑟) and 𝐶(𝑠). 𝑃 will guess 

which of 𝐸’s oracle queries are the ‘critical’ ones related 

to 𝑤 = 𝑠‖𝑡. 

 

Detailed Construction 

We construct the proof as follows. 

Input: 𝑃 receives a function 𝑓 from 𝐹(1𝑘) and a 

challenge 𝑦 = 𝑓(𝑤), where 𝑤 ← {0, 1}𝑘 is random. 

Simulation Setup: 𝑃 runs the adversary 𝐸 in the semantic 

security game. 𝑃 must simulate the 𝐼 and 𝐶 for 𝐸. 

𝑃 initializes two empty tables 𝑇𝐼  and 𝑇𝐶 , to store query 

response pairs for the simulated oracles. 

When 𝐸 queries 𝐼 on input 𝑟: 

If (𝑟, 𝐼𝑟) is in 𝑇𝐼 , return  𝐼𝑟 . 

Otherwise, generate a random  𝐼𝑟  ← {0, 1}𝑛, store (𝑟, 𝐼𝑟) 

in 𝑇𝐼  and return  𝐼𝑟. 

When 𝐸 queries 𝐶 on input 𝑠: 

If (𝑠, 𝐶𝑠) is in 𝑇𝑠, return 𝐶𝑠 

Otherwise, generate a random 𝐶𝑠  ← {0, 1}𝑘0 , store 
(𝑠, 𝐶𝑠) in 𝑇𝐶  and return 𝐶𝑠 

Find Stage: 𝑃 runs 𝐸{𝐼,𝐶}(𝐸), find, answering its oracle 

queries as above. 𝐸 outputs two messages (𝑥0, 𝑥1) and 

state information 𝑖. 
Guess Stage - Embedding the Challenge: This is the 

‘critical’ step 

𝑃 chooses random bit 𝑏 ← {0, 1} 

Instead of properly encrypting 𝑥𝑏, 𝑃 sets the challenge 

ciphertext directly to 𝑦 and gives it to 𝐸. 

𝑃 must now “program” the oracle retroactively to be 

consistent with the fact that 𝑦 is a valid encryption of 𝑥𝑏. 

This means there must exist some 𝑟 and 𝑠 such that: 

𝑠 = 𝑥𝑏 ⊕ 𝐼(𝑟) 

𝑡 = 𝑟 ⊕ 𝐶(𝑠) 

𝑤 = 𝑠‖𝑡 and 𝑦 = 𝑓(𝑤) 

However, 𝑃 does not know 𝑤. Instead, 𝑃 guesses which 

of 𝐸’s queries are the critical ones. Specifically, 𝑃 

randomly picks an index 𝑖 from 1,⋯ , 𝑞𝐼  and an index 𝑗 
from 1,⋯ , 𝑞𝐶 . 

Let 𝑟′ be the 𝑖-th query 𝐸 made to 𝐼, and let 𝑠′ be the 𝑗-
th query of 𝐸 to 𝐶. 

𝑃 now defines the oracle responses on these points to be 

consistent with a random 𝑤 and the message 𝑥𝑏; 

It sets 𝐼(𝑟′) = 𝑠′ ⊕ 𝑥𝑏  

It parses 𝑤 as 𝑠‖𝑡 (if this parsing fails because 𝑤 is not 

the right length, the simulation aborts—this happens with 

negligible probability) 

It sets 𝐶(𝑠′) = 𝑡 ⊕ 𝑟′ 

If the tables 𝑇𝐼  or 𝑇𝐶  already contain entries for 𝑟′ or 𝑠′, 

this programming would be inconsistent. In this case, 𝑃 

aborts. This is a “bad event” in the simulation. 

Running the Adversary: 𝑃 continues the simulation of 𝐸 

in the guess stage, providing it with (𝑦, 𝑥0, 𝑥1, 𝑖). 𝑃 

answers the queries as before, using the now-

programmed tables 𝑇𝐼  and 𝑇𝐶 . 

Extraction: After 𝐸 outputs its guess 𝑔, 𝑃 examines the 

query tables 𝑇𝐼  and 𝑇𝐶 . The hope is that the pair (𝑟′, 𝑠′) 

that 𝑃 guessed is exactly the pair (𝑟, 𝑠) used in the real 

encryption that would have produced 𝑦. If this is the case, 

then 𝑤 = 𝑠‖𝑡 is the value 𝑃 seeks, and it can output it. 𝑃 

outputs 𝑏𝑜𝑡 if it cannot find a suitable preimage. 

 

Analysis of Success Probability (𝝐) 

The advantage 𝜖′ of 𝑃 is the probability that it 

successfully inverts 𝑦. 

Probability that 𝐸 succeeds 𝜖. This is the baseline. 

The “Good Execution”: For 𝐸 to have its advantage 𝜖, 

its view in the simulation must be statistically close to a 

real attack. A “good execution” is one where 𝐸 makes 

critical queries 𝑟 to 𝐼 and 𝑠 to 𝐶. If it does not, its view is 

independent of 𝑏, and its advantage is 0. Thus, in a 

successful attack 𝜖 > 0, the probability that these critical 

queries occur is at least 𝜖. 

Probability of Correct Guessing: 𝑃 correctly guesses the 

critical pair (𝑟, 𝑠) with probability at least 1/(𝑞𝐼 ∙ 𝑞𝐶  ), 

given that they are among the queries made. 

Simulation Failures (Bad Events): We must subtract the 

probability that the simulation fails. 

i. Abort due to pre-defined oracle entry. The 

probability that a random 𝑟′ was already queried is 

≤ 𝑞𝐼/2
𝑘0  . The probability that a random 𝑠′ was 

already queried is ≤ 𝑞𝐶/2𝑛 . Since 𝑃 makes one 
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guess, the total probability of this abort is bounded 

by 𝑞𝐼 ∙ 2−𝑘0 + 𝑞𝐶 ∙ 2−𝑛. 

ii. The Collision event: A different bad event is if the 

adversary finds a collision—a different 𝑤 such that 

𝑓(𝑤) = 𝑦—without making the critical queries. 

The one-wayness of 𝑓 makes this unlikely. More 

subtly, if the adversary finds an 𝑟′′ ≠ 𝑟 that is 

consistent with the ciphertext through the oracle 

relations, it could cause the simulation to be 

inconsistent. The probability of such an event can 

be bounded by 𝑞𝐼 ∙ 2−𝑘 (the probability that for a 

given 𝐼-query, the resulting 𝑤 is a preimage of 𝑦). 

 

The presence of these bad events does not weaken the 

actual encryption scheme; instead, it quantifies the cost 

of the security reduction. The quality of a security proof 

is judged by its "tightness." A tight proof has a small 

security loss, meaning 𝜖′ ≈ 𝜖. Our proof is tight because 

for standard parameters (e.g., 𝑘 = 2048, 𝑘0 = 128, 𝑛 =
1920), the probability of these bad events is 

cryptographically negligible. For example, even for an 

adversary making a massive 264 oracle queries, 𝑞𝐼 ∙
2−𝑘0 = 264 ∙ 2−128 = 2−64, an astronomically small 

number. The analysis of bad events shows that the 

reduction from breaking our scheme to inverting the 

trapdoor function 𝑓 is highly reliable. The probability of 

the simulation failing is negligible against any realistic 

adversary. Therefore, the security guarantee of Theorem 

3.1 is not merely an asymptotic claim but provides a 

meaningful, concrete assurance that the bit-optimal 

scheme is as hard to break as the underlying one-way 

function is hard to invert. 

Putting all these together, the success probability of 𝑃 is 

approximately the probability that: 

i. 𝐸 succeeds (≈ 𝜖) 

ii. Multiplied by the probability 𝑃 guesses the 

critical queries correctly 1/(𝑞𝐼 ∙ 𝑞𝐶  ), and 

iii. The simulation does not abort. 

This leads us to the bound stated in the theorem: 

𝜖′ ≥ 𝜖 ∙ (1 − 𝑞𝐼 ∙ 2−𝑘0 − 𝑞𝐶 ∙ 2−𝑛) − 𝑞𝐼 ∙ 2−𝑘∎ 

 

Analysis of Running Time (𝒕′) 

The running time of 𝑃 is the running time of 𝐸 (𝑡), plus 

the overhead for simulation. 

𝑃 simulates the oracles, which is efficient (Ο(1) per 

query). 

The dominant cost comes from the embedding step. For 

each of the 𝑞𝐼 ∙ 𝑞𝐶  possible guess pairs, 𝑃 must perform 

the embedding, which involves a parsing of 𝑤 and table 

updates, taking O(𝜆𝑘) for some constant 𝜆, and one 

evaluation of 𝑓 to check consistency (time 𝑇𝑓(𝑘)). In the 

worst case, 𝑃 might need to check all pairs, leading to the 

term 

𝑞𝐼 ∙ 𝑞𝐶 ∙ (𝑇𝑓(𝑘) + 𝜆𝑘). 

Thus, the total time is:  

𝑡′ = 𝑡 + 𝑞𝐼 ∙ 𝑞𝐶 ∙ (𝑇𝑓(𝑘) + 𝜆𝑘) 

 

Security Analysis 

The Ideal Hash Function Paradigm 

Analysis of the strength of our designed protocol treats 

the functions 𝐼, 𝐶 as random oracles. In a practical 

instantiation, these are derived from a standard 

cryptographic hash function. This approach aligns with 

the paradigm established by Boneh and Corrigan-Gibbs 

(2021). While security proofs within the ideal hash 

function model do not constitute proof of security in the 

standard model, they provide a significantly higher level 

of assurance than purely ad-hoc design methodologies. 

The rationale is that this paradigm subjects the protocol 

to a more rigorous analytical framework, thereby 

identifying potential flaws that heuristic approaches 

might overlook. The proof for Theorem 3.1 presented in 

the Results section above relies on this model. 

 

Exact Semantic Security 

The semantic security concept introduced in Canetti et al. 

(2023) and Klooß & Rupp (2022) is adapted to account 

for random oracles and enable exact security analysis. 

The security experiment proceeds in two stages: 

i. Find stage: 𝑃{𝐼,𝐶}(ℰ, find) outputs messages (𝑥0, 𝑥1) 

and state information 𝑖. 
ii. Guess stage: An arbitrary bit 𝑏 ← {0,1} is selected, 

and 𝑦 ← ℰ{𝐼,𝐶}(𝑥𝑏) is computed. 

𝑃{𝐼,𝐶}(𝑦, 𝑥0, 𝑥1, 𝑖) then outputs a guess 𝑔. 

Success probability of the challenger is given by the 

equation 

Suc(𝑃) = 2 ∙ |𝑃𝑟|𝑔′ = 𝑔| −
1

2
|  (6) 

This normalization ensures the advantage ranges over 
[0, 1], where, 0 indicates random guessing and 1 

indicates perfect discrimination. 

 

Definition 2: Assume 𝐼 is an initiator to a given encoding 

protocol with a clear-text mapping of size 𝑛. A challenger 

𝐸(𝑡, 𝑞𝐼 , 𝑞𝐶), 𝜖 − 𝑏𝑟𝑒𝑎𝑘𝑠 𝐼(1𝑘) if: 

𝜖 ≤ 2 ∙ 𝑃𝑟

[
 
 
 
 
 

(ℰ, 𝒟) ← 𝐼(1𝑘)
𝐼, 𝐶 ← Ω ∙

(𝑥0, 𝑥1, 𝑖) ←  𝑃{𝐼,𝐶}(ℰ, find),

𝑏 ← {0, 1}, 𝑦 ← ℰ{𝐼,𝐶}(𝑥𝑏),

𝑃{𝐼,𝐶}(𝑦, 𝑥0, 𝑥1, 𝑖) = 𝑔 ]
 
 
 
 
 

− 1 (7) 

Furthermore, while running through the challenge 

outlined, 𝑃 executes in a maximum of 𝑠 steps, and issues 

maximum of 𝑞𝐼, 𝑞𝐶  requests respectively to 𝐼 and 𝐶. 

The parameters 𝑠, 𝑞𝐼, and 𝑞𝐶  represen totals across both 

stages of the experiment. 

 

Interpretation of the Security Reduction 

The reduction presented in Theorem 3.1 and its proof is 

tight. For practical parameters (e.g., 𝑘 ≥ 1024, (𝑘 ≫
𝑘0)), the success probability degradation is small 𝜖′ ≈ 𝜖. 
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The primary cost is the quadratic time complexity 

𝑂(𝑞𝐼 ∙ 𝑞𝐶) dominated by the evaluations of 𝑓, which is 

standard for such Fiestel-based constructions. While a 

linear dependence 𝑂(𝑞𝐼 + 𝑞𝐶) is theoretically more 

desirable, the quadratic term is acceptable and standard 

for practical purposes for the following reasons: The 

quadratic complexity is a theoretical characteristic of the 

proof technique, not a vulnerability in the cryptographic 

scheme itself. For all realistic adversarial models and 

standard parameter sizes (e.g., 𝑘 ≥ 2048), the implied 

security level remains overwhelmingly high, ensuring 

that the scheme's bit-optimality is achieved without a 

practical compromise in security. 

 

Security Intuition 

Semantic security relies on the adversary's inability to 

recover the full preimage 𝑤 = 𝑠‖𝑡 of 𝑓. If any bit of 𝑠 

unknown, 𝐼(𝑟) remains unpredictable, hiding 𝑟 and thus 

𝑥. Even if 𝑠 is known, incomplete recovery of 𝑡 prevents 

full determination of 𝑟, leaving 𝑥 uniformly distributed 

from the adversary’s perspective. A formal security proof 

reveals some subtleties, requiring rigorous treatment, 

particularly for optimal exact security bounds (Barker, 

2022; Chase et al., 2022). The proof given for Theorem 

3.1 provides a tight reduction to the hardness of inverting 

𝐹 and hence, a justification for this claim. However, an 

important open problem is to achieve a linear dependence 

on  𝑞 𝐼 + 𝑞𝐶 . 

While the core intuition for semantic security—that the 

message is hidden by the one-time-pad properties of the 

XOR operations—is sound, a formal proof reveals 

several subtleties that complicate the achievement of 

tight, exact security bounds. These are not merely 

theoretical concerns but directly impact the quantitative 

security guarantees of the scheme. 

The primary challenges and subtleties include: 

i. The Dependency and "Commitment" Problem: 

In the Feistel-like structure 𝑠 = 𝑥 ⊕ 𝐼(𝑟), 𝑡 = 𝑟 ⊕
𝐶(𝑠), the value 𝑠 is dependent on 𝐼(𝑟). This creates 

a subtle "commitment": when an adversary queries 

𝐶(𝑠), the value 𝑠 may have already been determined 

by a previous query to 𝐼(𝑟). The reduction 

algorithm 𝑃 must guess which pair of queries (𝑟, 𝑠) 

is the critical one used in the challenge ciphertext. 

This intrinsic dependency is the fundamental reason 

for the quadratic complexity 𝑂(𝑞𝐼 ∙ 𝑞𝐶) in the 

security reduction, as 𝑃 must potentially check all 

pairs of queries. Achieving a linear dependence 

𝑂(𝑞𝐼 + 𝑞𝐶) is a major open challenge because it is 

difficult to decouple this relationship without 

weakening the security model or the scheme's 

efficiency. 

ii. Handling Oracle Consistency and "Bad" 

Randomness: 

The reduction's strategy of retroactively 

programming the oracles 𝐼(𝑟) and 𝐶(𝑠) is delicate. 

The "bad event" occurs if the adversary has already 

queried 𝑟′ or 𝑠′ before the guess stage, forcing an 

abort. The probability of this event is bounded by 

𝑞𝐼/2
−𝑘0 + 𝑞𝐶/2𝑛. A subtle aspect here is ensuring 

that the adversary cannot systematically cause these 

aborts. The proof must demonstrate that the 

adversary, without prior knowledge of the critical 

points, cannot force the simulation to fail with non-

negligible probability, which is ensured by the 

randomness and large size of the spaces for 𝑟 and 𝑠. 

iii. The "Switching Lemma" and Statistical Distance: 

A key step in the proof is to argue that if the 

adversary never makes the critical queries, its view 

is statistically indistinguishable from a simulation 

where the message is completely independent. This 

involves analyzing the statistical distance between 

the distribution of the simulated ciphertext and a 

real one. The subtlety lies in accounting for all 

possible adversarial queries and proving that the 

responses from the randomly programmed oracles 

do not create a detectable statistical bias. This 

requires a careful application of a "switching 

lemma," which formally shows that the probability 

of the adversary distinguishing the two worlds is 

bounded by the probability of it triggering a bad 

event (like the ones above). 

iv. Bounding Collision Probabilities Exhaustively:  

The term 𝑞𝐼 ∙ 2−𝑘 in the security bound accounts for 

the probability of an adversary stumbling upon the 

preimage 𝑤 through a lucky guess in an 𝐼-query, 

without following the intended logical path of the 

encryption. The subtle challenge is to identify and 

bound all such potential collision paths—not just 

the direct inversion of 𝑓(𝑤) but also cases where 

different 𝑟′′ and 𝑠′′ combinations accidentally 

satisfy the encryption equations for the same 

ciphertext. A rigorous proof must exhaustively 

model all such interactions between the adversary's 

oracle queries and the structure of the scheme. 

These subtleties transform a simple intuitive argument 

into a complex probabilistic analysis. The goal of 

achieving *exact security* is to meticulously account 

for every possible adversarial strategy and interaction 

with the oracles, resulting in a security bound where the 

degradation in advantage 𝜖′ ≈ 𝜖/𝑞𝐼 ∙ 𝑞𝐶  is explicitly 

quantified. This concrete bound is far more valuable for 

practice than an asymptotic statement, as it allows a 

cryptographer to confidently select parameters 𝑘 and 𝑘0 

knowing that even a powerful, concrete adversary 

cannot break the scheme without first breaking the 

underlying one-way function. 

 

Comparison with OAEP and Related Schemes 

A clear comparison with existing provably-secure 

schemes, specifically the Optimal Asymmetric 

Encryption Padding (OAEP), highlights the distinct 
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performance and security trade-offs of our proposed 

construction. The following table summarizes the key 

differences for a 𝑘-bit security parameter (e.g., a 𝑘-bit 

RSA modulus) and a secondary parameter 𝑘0 (e.g., 128 

bits): 

 

Table 1: Key differences for a 𝒌-bit security parameter (e.g., a 𝒌-bit RSA modulus) and a secondary parameter 

𝒌𝟎 (e.g., 128 bits) 

Feature OAEP (Bellare & Rogaway) Our Proposed Scheme Heuristic Length-

Preserving Scheme Ciphertext Size 𝑘 + 𝑘0 bits 𝑘bits (Bit Optimal) 𝑘 bits 
Encryption Cost 2 evaluations of 𝑓 1 evaluation of 𝑓 1 evaluation of 𝑓 

Decryption Cost 1 evaluation of 𝑓 ⁻¹ + 1 of 𝑓 1 evaluation of 𝑓 ⁻¹ 1 evaluation of 𝑓 ⁻¹ 
Provable Security Yes (Standard Model for 

partial disclosure 

Yes (Random Oracle 

Model 

No 

Security Notion IND-CCA2 (in the Random 

Oracle Model 

Semantic Security 

(implies IND-CCA2 in the 

ROM 

Varies; often ad-hoc 

Reduction Tightness Tight Tight Not Applicable 

Reduction 

Complexity 

Linear 𝑂(𝑞ℎ𝑎𝑠ℎ) Quadratic 𝑂(𝑞𝐼 ∙ 𝑞𝐶) Not Applicable 

 

Summary of the Comparison 

Our scheme occupies a unique and valuable point in the 

design space. It strictly outperforms OAEP in terms of 

computational efficiency and ciphertext size. It provides 

significantly stronger security guarantees than purely 

heuristic length-preserving schemes. The trade-off for 

this performance gain is a security proof that, while 

highly rigorous and concrete, resides in the Random 

Oracle Model with a quadratic reduction complexity—a 

cost we argue is acceptable for practical deployment. 

Therefore, this work is best positioned as a provably 

secure replacement for heuristic length-preserving 

encryption and a more efficient alternative to OAEP in 

scenarios where the ROM is an acceptable foundation 

and bandwidth/computation are at a premium. 

 

Limitations 

Our security proof is situated in the Ideal Hash Function 

Paradigm (Bellara & Rogaway, 1994; Boneh & 

Corrigan-Gibbs, 2021). This model, while not yielding 

standard-model security, provides a rigorous framework 

for analyzing protocols and has been successfully used to 

validate numerous practical standards. As noted by 

Boneh and Corrigan-Gibbs, proofs in this model offer 

significantly more assurance than purely heuristic 

designs. Our approach follows this paradigm but pushes 

it further by providing a concrete security reduction 

(Theorem 3.1), as advocated by Klooß and Rupp (2022) 

and Barker (2022). This allows for meaningful security 

guarantees for specific parameter sizes (e.g., 𝑘 ≥ 1024), 

moving beyond purely asymptotic statements and 

enabling a more direct comparison with the concrete 

security of schemes like OAEP. 

 

CONCLUSION 

Our proposed encryption algorithm requires only one 

calculation of 𝑓, and 𝑓−1 respectively for encryption and 

decryption. The ciphertext length is 𝑘 bits, provided 𝑘 ≥
𝑛 + 𝑘0 + 𝑘1.The concrete instantiation presented in our 

pseudocode incorporates deliberate design choices to 

enhance security. The initiator and compression 

functions are parameterized by both the scheme identifier 

and the specific one-way invertible function 𝑓 through 

the descriptor 𝑑𝑒𝑠𝑐. This key separation heuristic 

prevents cross-protocol interactions that could arise when 

a single key is reused across multiple cryptographically 

secure components. The implementation of key variants 

follows a similar defensive principle. Additionally, the 

conservative approach of utilizing only half of the SHA 

output bits addresses recognized structural limitations 

when employing NIST-based compression functions in 

the instantiation of random oracles. Similarly, the quality 

of the reduction in our proposed scheme is determined by 

the tightness of the relationships among the security 

attributes, which makes it possible to derive concrete 

bounds on the resources required to compromise the 

encryption scheme. An open problem is to achieve linear 

dependence on 𝑞 𝐼 + 𝑞𝐶, the time complexity required to 

break 𝜖 while maintaining comparable 𝜖′. 
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