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Experimental Study on the Impact of Blue Filtering and Equalization in OOK-NRZ White
LED Visible Light Communication Systems

\TU
\‘A‘i‘" Te e

4

g«

e

N E’?I.q
>

Sols N

*1Abdurrasheed B. Magaji, Florence N. Ikechiamaka and Akinsanmi Akinbolati

"Department of Physics, Umaru Musa Yar’adua University, Katsina, Nigeria.
2Department of Physics, Federal University Dutsin-Ma, Nigeria.

*Corresponding author: Email: abdurrasheed.magaji@gmail.com

ABSTRACT

Visible Light Communication (VLC) offers a high-bandwidth, energy-efficient,
and license-free medium for wireless data transmission using white LEDs.
However, performance is limited by the phosphor’s slow response and
temperature sensitivity, which reduce modulation bandwidth and signal integrity.
This study experimentally investigates improvements in a white LED-based VLC
system using On-Off Keying Non-Return-to-Zero (OOK-NRZ) modulation
through blue optical filtering and passive electronic equalization. The system was
tested under data rates from 0.5-20 MHz and varying drive currents. A blue
optical filter suppressed slow yellow phosphor components, while an R//C
equalization circuit mitigated inter-symbol interference (ISI). Results show that
blue filtering enhances high-frequency stability and extends modulation

Keywords: bandwidth, while equalization improves signal fidelity and eye diagram opening.
Optical Filtering, Optimal performance was achieved at a driving current of 200 mA, balancing
Signal Equalization, signal quality and thermal stability. These findings demonstrate that combining
Eye Diagram, blue filtering and equalization provides an efficient, low-cost approach for
Thermal Stability, improving data throughput and reliability in white LED-based VLC systems,
Data Throughput. enabling practical indoor communication and smart lighting applications.
INTRODUCTION 2023). On-Off Keying Non-Return-to-Zero (OOK-NRZ)
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Visible Light Communication (VLC) has emerged as a
promising complementary technology to traditional radio
frequency (RF) systems, leveraging the visible light
spectrum (400-700 nm) for wireless data transmission.
Its advantages include high bandwidth, license-free
spectrum, and dual wuse for illumination and
communication (Haas et al., 2016; Gupta et al., 2023).
White LEDs are preferred transmitters because of their
energy efficiency and rapid adoption in modern lighting
(Komine & Nakagawa, 2004).

However, phosphor-based white LEDs exhibit slow
temporal response due to their yellow phosphor
component, limiting modulation bandwidth and causing
inter-symbol interference (ISI) at high data rates (Grubor
et al., 2008; Harris & Clark, 2022). Moreover,
performance degradation due to temperature variations
impacts luminous efficiency and output stability (Yu et
al., 2021; Martinez et al., 2023).

To overcome these challenges, optical blue filtering and
equalization have been applied to enhance signal fidelity
and spectral response (Tokgoz et al., 2019; Pham et al.,

modulation remains attractive for simplicity but requires
compensation for LED bandwidth limitations. This paper
presents an experimental study integrating blue filtering
and a passive R//C equalizer to optimize VLC system
performance. The results contribute to 6G and smart
indoor network research (Smith et al., 2025; Powell &
Scott, 2024), with relevance to developing infrastructures
in Nigeria (Ibrahim et al., 2024).

MATERIALS AND METHODS

A Luxeon Star white LED (Philips Lumileds, Part No.
LXHL-MW1B) served as the transmitter. A binary code
of 20 Mbps was extracted from an established channel
model (Ghassemlooy et al., 2019). The receiver used a
photodiode (active area = 15 mm?) with a 30 mm
focusing lens. Junction temperature was monitored using
a Type K thermocouple and a 160x120 PX thermal
imaging camera for non-contact thermal observation.
The received optical signal was amplified using a MAX
3664 Transimpedance Amplifier (gain = 6000 Q) and
displayed on a digital oscilloscope (input impedance = 50
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Q). A blue filter (center wavelength =450 nm, bandwidth
=40 nm, 60% T) was installed before the photodetector.
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Data analysis, including signal plotting, BER, SNR, and
eye diagrams, was conducted using Python.

Table 1: Specifications of Parameters Used in VLC Investigation

S/N Parameters Values

1 Luxeon LED Part number LXHL-MWI1B

2 Receiver concentration lens diameter 30 mm

3 Blue filter central wavelength and width 450nm, 40nm (60% through)
4 Photodetector (PIN) area 15mm?

5 LED driver current (Low current) 300 mA (Low data rate in indoor application)
6 Preamplifier (Max 3664) TIA 6000 Q

7 Equalizer capacitor (Ceramic X7R) 15 pF

8 Equalizer 2 resistor (Surface-Mount Resistor) 10 KQ

9 Load (Oscilloscope — input impedance) 50 Q

10 Receiver input dynamic range 28 dB

11 LED beam angle 45°

12 Digital thermocouple Typically type K

13 Thermal imaging camera Thermal resolution 160x 120

Table 1 summarizes the experimental parameters. The
selected driving current and optical filter bandwidth were
optimized to balance system sensitivity and thermal
stability.

Method

The LED intensity was modulated using OOK-NRZ
coding. A binary stream (20 Mbps) was uploaded into an
arbitrary waveform generator (AWG). Logic “1” turned

the LED ON, and “0” turned it OFF. The optical signal
traversed a 10 cm free-space channel to the photodiode.
Two performance optimization strategies were applied:

i. Blue Filtering: The optical filter suppressed the

slow yellow phosphor response, improving

temporal response and system bandwidth.

ii. Equalization: A parallel resistor-capacitor (R//C)
network was placed after the TIA to enhance high-
frequency components and reduce ISI (Patel &
Williams, 2024).

Digital

thermocoupféﬂ"-_——

Plate 1: Experimental setup for the VLC system

RESULTS AND DISCUSSION
Impact of Blue Filtering on Frequency Response
The received signal strengths for unfiltered (white) and

blue-filtered conditions were measured from 0.5-20
MHz.

Figure 1 presents the normalized signal response in dB
versus frequency for both cases. Normalization was
performed by dividing each voltage response by the
maximum measured amplitude (V/Vmax) and converting
to dB =20 logio (V/Vmax).
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Normalized Received Signal (dB) vs Frequency
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Figure 1: Normalized Received Signal (dB) vs. Frequency (MHz) for White and Blue Light

At 0.5 MHz, the white light response was 36.65 dB,
reducing sharply to 15.56 dB at 20 MHz. The blue-
filtered light started lower (=19 dB) but remained stable
up to 10 MHz and decreased gradually thereafter. The
normalization shows that blue filtering sustains better
high-frequency response by suppressing phosphor-
induced delay. This supports similar observations in
Minh et al. (2008) and Johnson et al. (2023).

Bandwidth and Power

Figure 2, illustrates the 3 dB bandwidth extension
achieved through blue filtering, confirming its ability to
expand modulation bandwidth. Figure 3 compares
optical and electrical spectra, while Figure 4 shows
power efficiency trends, indicating blue-filtered LEDs
maintain stable power usage across frequencies — in
agreement with Zhang et al. (2024).

Received Signal Strength vs Frequency with 3 dB Bandwidth Indicators
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Figure 2: Received Signal Strength against frequency with 3dB Bandwidth indicator
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Electric Bandwidth: Intensity vs. Frequency
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Figure 3: Simulation of optical and electrical bandwidths for white and blue light

The Figure 3 shows that the blue filtered LED maintains
a higher and more stable electrical bandwidth compared
to the unfiltered white LED. While the white LED’s
broad optical spectrum results in slower response and
reduce modulation capability, the blue filtered light
dominated by fast blue emission exhibits sharper
transitions and improved high frequency performance.

Equalization Performance

Figure 4, compares two equalizers (EQ1 and EQ2). EQ2
produced a stronger and more stable signal, peaking at 34
mV around 10 MHz, whereas EQ1 peaked at 10 mV. The
enhanced performance of EQ2 demonstrates effective ISI
mitigation and synergy with blue filtering. Similar joint
optimization effects were reported by Wang et al. (2022).

Received Signal vs Frequency for EQ1 and EQ2
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Figure 4: Received signal (mV) versus frequency (MHz) for EQ1 and EQ2
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CONCLUSION

This study demonstrates that white LED VLC
performance degrades at higher data rates due to
phosphor delay and temperature effects. Blue filtering
effectively mitigates high-frequency attenuation, while
R//C equalization improves eye diagram quality and
overall signal fidelity. An optimal driving current of 200
mA provided stable thermal and electrical balance.
Combining blue filtering and equalization offers a
practical, low-cost approach for improving data
throughput and robustness in LED-based VLC. Future
extensions will include adaptive equalization using
machine learning and hybrid VLC/RF integration for 6G
smart networks.
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