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ABSTRACT 

Despite significant advancements in multi-messenger astronomy and gravitational 

wave detection, the accurate determination of EOS for NS remains a critical 

challenge in astrophysics. Current theoretical models often fail to comprehensively 

reconcile the fundamental properties of NS such as the maximum mass, with 

observational evidence.  The gap limits the full understanding of the maximum 

stable mass and density of NS, as well as it behavior under extreme relativistic 

conditions. Computational tools like Einstein’s toolkit and recent multi-massagers 

observations by LIGO and Virgo have provided useful data, there is a lack of 

unified, precise EOS models’ that incorporate both theoretical and observational 

constraints. Addressing this problem is essential for advancing our understanding of 

NS physics and for guiding future observations. This research therefore, aims to 

address these gaps by constructing a robust theoretical EOS models for NS using 

piecewise polytrope approach based on general relativity, supported by 

computational simulations and validate same against existing observational data.  

An EOS constructed from theoretical models and numerical simulations has 

revealed that a NS can attain a maximum mass of 2.33M⊙  before collapsing into a 

BH at a radius of up to 12 km, based on the mass-radius relationship derived from 

the model. 

INTRODUCTION 

One of the most interesting topics in research is the 

investigation of severe environments around the globe. 

A significant milestone in contemporary astronomy was 

reached in 2017 when the Laser Interferometer 

Gravitational-wave Observatory (LIGO) detected 

gravitational waves for the first time from the merging 

of two neutron stars (NSs) (LIGO Scientific 

Collaboration, 2021). 

It confirmed Albert Einstein's century-old prediction in 

1915 (Einstein, 1915) that masses moving through space 

would create ripples in its fabric, which travel at the 

speed of light. Neutron stars (NSs) act as cosmic 

laboratories where new forms of matter could exist, 

including hyperons and quarks. Through experimental 

methods and theoretical models, scientists have 

expanded our understanding of hot and dense matter by 

studying exotic nuclei, pushing the boundaries of 

knowledge in nuclear experiments and astrophysical 

observations (Abbot et al., 2021).  Abrupt supernova 

explosions of dying giant stars produced the immensely 

dense objects known as NSs. Most importantly for NS 

theory, it is the equation of state (EOS) of dense matter 

in the interiors of NS, Pressure (P) and mass density (ρ) 

or related energy density are related and this 

relationship is known as the EOS.  

The dependence of P (ρ) is necessary for constructing 

NS models and is considered a fundamental parameter 

in this study (Agathos et al., 2015). Despite extensive 

research, the EOS of neutron stars is still not precisely 

known due to their extreme properties, which make 

them ideal laboratories for potentially discovering new 

phases of matter. These exotic systems have been 

utilized to test various predictions of the theory of 

General Relativity (GR) with unprecedented accuracy, 

with direct detection of gravitational waves (GW) 

emitted by objects such as NSs and black holes (BH). 

GW are ripples in space time created by the motion of 

massive objects like NSs (Radice et al, 2018; Abbott et 

al., 2021). 

Despite significant advancements in multi-messenger 

astronomy and gravitational wave detection, the 
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accurate determination of EOS for NS remains a critical 

challenge in astrophysics. Current theoretical models 

often fail to comprehensively reconcile the fundamental 

properties of NS (e.g. mass, radius, pressure, and 

density) with observational evidence.  The gap limits the 

full understanding of the maximum stable mass and 

density of NS, as well as its behavior under extreme 

relativistic conditions.  

This study however, focuses on the object, to construct a 

theoretical equation of state for neutron star using 

general relativity approach and piece-wise polytrope 

model to describe their maximum mass before it 

becomes unstable and collapses into a black hole. 

 

Theoretical Framework 

According to the geometrical framework of a four-

dimensional manifold, General Relativity (GR) is 

established ((Einstein, 1915); the four coordinates 

(χ0, χ1, χ2,, χ3, ) are used to identify an event in this 

manifold. χ0,  which corresponds to time t, (χ0 = ct) 

with 𝑐  being speed of light, and the remaining 

coordinates, (χi = 1,2,3,) indicate the spatial location. 

One of the main outcomes of GR is the Einstein field 

equations (Shapiro & Teukolsky, 1983). Through affine 

connections, they establish a connection between the 

gravitational potential and the related metric 𝑔 and the 

physical properties of matter, which are represented by 

the energy-momentum tensor 𝑇. These differential 

equations decreased to the Poisson equation at the 

Newtonian limit given by. 

∇2𝜙 = 4𝜋𝐺𝜇𝑜    (1) 

where the mass density is represented by 𝜇0, the 

universal gravitational constant is 𝐺, and the Newtonian 

gravitational constant is 𝜙 (Shapiro & Teukolsky, 

1983). This limiting situation indicates that the second 

derivatives of the gravitational potential are contained in 

the Einstein tensor 𝐺𝜇𝜈 .  

In fact  

𝐺𝜇𝑣 =  𝑅𝜇𝑣 −
1

2
𝑅𝑔𝜇𝑣 ,   (2) 

in which 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 the scalar curvature is represented 

as 𝑅𝜇𝜈, while the Ricci tensor is identified as 𝑅𝜇𝜈 =

𝑅𝜇𝜎𝜈
𝜎 , which is a contraction of the Riemann tensor. On 

a closed curve, the Riemann tensor indicates the 

influence of curved space in parallel conveying vectors. 

It can be represented as a function of Christoffel 

symbols 𝛤𝜈𝜇
𝜎 , and is calculated as a commutator between 

covariant derivatives in two space-time directions. 

R𝑣𝜇
𝜎 = 𝜕𝜏Γ𝑣𝜇

𝜎 − 𝜕𝑣Γ𝜏𝜇
𝜎 + Γ𝜏𝛾

𝜎 Γ𝑣𝜇
𝛾

− Γ𝑣𝛾
𝜎 Γ𝜏𝜇

𝛾
 (3) 

where Γ𝑣𝜇
𝜎  is given as 

Γ𝑣𝜇
𝜎 =

1

2
𝑔𝜎𝛾(𝜕𝜇𝑔𝑣𝛾 + 𝜕𝑣𝑔𝜇𝛾 − 𝜕𝛾𝑔𝑣𝜇) (4) 

Here the notation 𝜕𝜎  to label 
𝜕

𝜕𝑥𝜎  𝑤𝑖𝑡ℎ 𝜎 = 0,1,2,3. The 

field equations from Einstein are:  

𝐺𝜇𝑣 =  
8𝜋𝐺

𝑐4 𝑇𝜇𝜈   𝜇, 𝜈 = 0,1,2,3  (5) 

Finding the solutions to the current theories of gravity 

and comparing them to physical objects like BHs and 

NSs, which are solutions of these theories consisting of 

space-time disturbances propagating at the speed of 

light 𝑐, is one of the core goals of these theories. The 

nuclear EOS can be inferred from the GW emission of a 

binary neutron star (BNS) inspiral. The tidal 

polarizability characteristics of the two NSs provide this 

information, which is most noticeable in the late inspiral 

period right before the merger. The amplitude and 

frequency of the GW inspiral signal rise when BNSs 

evolve as a result of the gravitational radiation reaction, 

reaching a merger frequency of about 2000 𝐻𝑧. The 

goal of GW signal observation from BNS systems is to 

improve our comprehension of the unknown EOS of NS 

matter and the structure of NS. This work investigates 

the possibility that the inspiral signal parameters provide 

useful data regarding the EOS of materials from neutron 

stars (Haensel, et al, 2006; Camenzind, 2007). 

Piecewise Polytrope Model: When it comes to dense 

matter models, the main issues that 

scientists are dealing with are first the difficulty of obser

ving the matter and second, the difficulty of accurately c

omputing many-body interactions. Constraining the 

EOS of ultra-dense materials can be done in two ways. 

Phenomenological models that are modified to fit 

observations of NSs and nuclear events are based on 

density-dependent interactions.  

Recall the hydrostatic equilibrium second-order 

deferential equation, one need to determine the relation 

between pressure and density;  
1

𝑟2

𝑑

𝑑𝑟
(

𝑟2

𝜌(𝑟)

𝑑𝑝

𝑑𝑟
) = −4𝜋𝐺𝜌(𝑟)   (6) 

and that is where we are going to use what is called 

polytrope solution to solve which is expressed in 

equation (7) 

𝑃 = 𝐾𝜌Γ    (7) 

In the model expression, the pressure as being equal to a 

constant 𝐾  times the density raised 

to another constant gamma Γ and Γ ≡ 1 +
1

𝑛
, n, is 

polytrope index, and it can take any number. take note 

that  Γ is defined by the polytrope index and Γ1 is an 

adiabatic index. 

Let’s defines the radial coordinate, 

𝑟 ≡ 𝛼. 𝜉.
𝑑

𝑑𝑟
=

𝑑

𝑑(𝛼𝜉)
,   (8) 

𝜉 is a dimensionless variable a proxy for radius and α is a new constant   
In the polytrope model, the density; 𝜌 = 𝜌𝑜𝜃𝑛,   𝜃 =
𝜃(𝜉) then plug it into (7) 

→   𝑃(𝜉) = 𝐾𝜌𝑜
1+1

𝑛⁄
 . 𝜃(𝜉)

𝑛+1   (9) 

Concerning the matter's compressibility, three distinct 

groups can be applied when organizing the 

corresponding EOSs: soft, mild, and stiff.  According to 

research by Vivanco, et al. (2019), with varying EOSs, 

one can generate a variety of stellar models, especially 
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concerning maximum masses, which range from 

𝑀𝑚𝑎𝑥~1.4𝑀⨀ for the softest EOSs to 𝑀𝑚𝑎𝑥~2.5𝑀⨀ for 

the stiffest. The EOSs can also be separated based on 

the matter's composition; only nucleon matter can be 

responsible for extremely stiff EOSs. (Friedman, et al, 

1984). 

Star models can be computed in the framework of 

General Relativity after obtaining the EOS. The central 

density 𝜌𝑐 is used to parameterize a family of neutron 

star models, where the gravitational mass 𝑀 = 𝑀(𝜌𝑐) 

and the circumferential radius 𝑅 = 𝑅(𝜌𝑐) are derived. 

The proper length of the neutron star equator is 

represented by 2𝜋𝑅. (Fujimoto, et al, 2021).  

 
𝑑𝑝

𝑑𝑟
= 

−
𝐺𝑚(𝑟)

𝑟2 . (1 + 𝜖 +
𝑃

𝜌𝑜𝑐2) (1 +
4𝜋𝑟3𝑃

𝑚(𝑟)𝑐2) (1 −
2𝐺𝑚(𝑟)

𝑟𝑐2 )
−1

 

     (10) 

From the derived TOV equation (10), where 𝑝 = 

pressure, 𝜌𝑜 = rest mass density, 𝑚(𝑟) = enclosed mass, 

and (1 −
2𝐺𝑚(𝑟)

𝑟𝑐2 )
−1

 is the metric deviation; For a NS we 

assume zero temperature limit and a constant density, 

now NS actually have a high temperature, so the zero-

temperature limit does not actually mean the 

temperature is zero, it means that it is low compared to 

the chemical potential. Constant density can be 

interpreted in two ways, either we take equation (11) 

constant or equation (12) constant. 

→  𝜌𝑜, (1 + 𝜖) = constant   (11) 

→  𝜌𝑜 = constant and 𝜖 = 0  (12) 

Defining:    

𝑥 =
𝑃

𝜌𝑐2 ,    𝛽(𝑟) ≡  
2𝐺𝑚(𝑟)

𝑟𝑐2    (13) 

Here 𝛽 is metric deviation, plug this (13) into equation 

(10) gives  

→   
𝑑(𝜌𝑐2𝑥)

𝑑𝑟
= −

𝜌

2𝑟
. (1 + 𝑥)(𝛽𝑐2 + 8𝜋𝐺𝑟2𝜌𝑥)(1 − 𝛽)−1

     (14) 

Since the density is constant, we have mass is just the 

volume times the density 𝜌. We can plug this into 𝛽 to 

find that 𝛽 is proportional 𝑟2. 

𝑚(𝑟) =
4𝜋𝑟3

3
𝜌    (15) 

and  

𝛽(𝑟) =
8𝜋𝐺𝜌𝑟2

3𝑐2     (16) 

Note, 8𝜋𝐺𝑟2𝜌 = 3𝛽𝑐2  

Then, 

→  𝛽(𝑟) =
8𝜋𝐺𝜌𝑟2

3𝑐2 →
𝑑𝛽

𝑑𝑟
=

2𝛽

𝑟
  (17) 

Using the chain rule, 

→   
𝑑

𝑑𝑟
=

𝑑𝛽

𝑑𝑟
,

𝑑

𝑑𝛽
=  

2𝛽

𝑟
 .

𝑑

𝑑𝛽
   (18) 

Then plug (18) into equation (17)  

⇒   𝜌𝑐2.
2𝛽

𝑟

𝑑𝑥

𝑑𝛽
=  

 −
𝜌

2𝑟
. (1 + 𝑥)(𝛽𝑐2 + 3𝛽𝑐2𝑥)(1 − 𝛽)−1 (19) 

Some term cancelling out and rearranging, 

⇒  
𝑑𝑥

(1+𝑥)(1+3𝑥)
= −

1

4
.

𝑑𝛽

1−𝛽
   (20) 

Then integrate equation (20) gives 

→   𝑙𝑛 (
1+3𝑥

1+𝑥
) =  

1

2
. ln(1 − 𝛽) + 𝐶  (21) 

Find the constant,  assume the 𝜌𝑠 = 0, means that 

𝑥(𝑟 = 𝑅) = 0. 

⇒   𝑙𝑛 (
1+3𝑥

1+𝑥
) =  

1

2
. ln(1 − 𝛽) + 𝐶  (22) 

𝜌𝑠 = 0 → 𝑥(𝑟 = 𝑅) = 0  

Then we define another quantity,  𝛽 ̅  ≡  
2𝐺𝑚

𝑅𝑐2   →

𝑥(𝛽̅) = 0 

Then plug in 𝑐 = −
1

2
ln (1 − 𝛽̅) in equation (21) and re 

write 

⇒   𝑙𝑛 (
1+3𝑥

1+𝑥
) = 𝑙𝑛√

1−𝛽

1−𝛽̅
   (23) 

Solving for 𝑥(𝛽) → 𝑃(𝛽) = 𝜌𝑐2. 𝑥(𝛽) 

⟹     𝑃(𝛽) = 𝜌𝑐2.
√1−𝛽−√1−𝛽̅

3√1−𝛽̅− √1−𝛽
  (24) 

𝛽 =
2𝐺𝑚(𝑟)

𝑟𝑐2  =
8𝜋𝐺𝜌𝑟2

3𝑐2 ,   𝛽̅ =
2𝐺𝑚

𝑅𝑐2   

and central pressure: 

𝜌𝑜 ≡ 𝑝(𝑜) = 𝜌𝑐2.
1−√1−𝛽̅

3√1−𝛽̅−1
   (25) 

Note the denominator if it → 0; 𝑝(𝑜) → 𝛼 𝑎𝑛𝑑 𝑖𝑓 𝛽̅ →
8

9
  , the star will collapse to black hole. 

The maximum mass of NS can be, when 
2𝐺𝑚

𝑅𝑐2 =
8

9
, 

rewriting the radius gives; 

𝑅 = (
3𝑀

4𝜋𝜌
)

1/3
    (26) 

assume the nuclear density: 

𝜌 ≈ 2.
2𝑀𝑛

4𝜋𝑟𝑛
3    (27) 

here 𝑟𝑛 is nuclear radius ≈ 10−15𝑚. Neutron has two 

spin state, spin up/down, hence the 2. substituting the 

density (27) into the radius (26) 

⟹   
2𝐺𝑚

𝑅𝑐2 =
2𝐺

𝑟𝑛𝑐2   . (𝑚2 ⋅ 𝑀𝑛)
1

3 =
8

9
  (28) 

Now solve for the mass thus as; 

𝑀𝑚𝑎𝑥 ≈
1

√2𝑀𝑛
. (

𝑟𝑛𝐶2⋅8 9⁄

2𝐺
)

3

2
 ≫ 3𝑀⊙  (29) 

 

MATERIALS AND METHODS 

Model Setup: The intent of this study is in solving the 

TOV equation, which in the framework of GR describes 

the structure of a static, spherically symmetric NS 

(Oppenheimer, & Volkoff, 1939). Combining 

theoretically derived parameters from the nuclear matter 

EOS for NS with observationally obtained parameters 

Table 1 was developed. A customized Python package 

was developed and adapted from previous codes to 

enable the study of static neutron stars with various EOS 

and to calculate tidal properties. This package was 

specifically designed for ease of use in a Jupyter 
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Notebook environment, where it can be modified, 

executed, and visualized interactively and the schematic 

summary of the work flow is shown in figure 1. The 

package implements key modifications, allowing it to: 

Solve the TOV equation: It computes the internal 

structure of NS based on the input EOS, mass, density, 

pressure, and radius. 

Perform interactive visualizations: The package outputs 

detailed graphs for the Mass-Radius, Pressure-Density, 

Mass-Density, and Radius-Density relationships, 

enhancing the analysis of EOS models. 

The simulations and code modifications were carried 

out on an Ubuntu 24.12.04 system using kuibit a Python 

3.12 library and the Jupyter Notebook environment for 

script writing, debugging, and visualization. The kuibit 

library was utilized to analyse and visualize the output 

from the Einstein Toolkit (Löffler, et al., 2012) 

simulations, while the Wolfram Mathematica was 

employed for additional computations where high 

accuracy was required. 

 

 

RESULTS AND DISCUSSION 

Results and Comparison with other researchers EOS 

The M(R) connection is a crucial parameter in NS 

observations. To determine the EOS of NS matter at 

very high densities, it is essential to know the maximum 

gravitational mass of an NS, which indicates its stability 

against collapse into a black hole. Based on our 

simulations, figure 1 illustrates the maximum NS mass 

as a function of radius. 

The detection of GW from the merger of two neutron 

stars in 2017, designated GW170817, marked the 

beginning of a new era in multimessenger and 

multiwavelength astronomy. This event, provided 

astronomers with a powerful tool to refine our 

understanding of NS physics. The constraints imposed 

by GW170817, combined with galactic measurements, 

have led to a revised mass limit of 2.0𝑀⨀; this finding 

effectively rules out any EOS for NSs that 

exceeds 2.0𝑀⨀. Variations in the radius and mass can 

impact how NSs emit radiation, interact in binary 

systems, or produce gravitational waves. 

Table 1: The Nuclear matter EOS parameters of NS  

S/N Mass (𝑴⨀) Radius (Km) Densities (𝒈𝒄𝒎−𝟑 𝚪 K 

1 1.44 14 4 × 104 3.00 100 

2 2.00 13 2 × 1011 2.50 100 

3 2.50 12 3 × 1014 2.00 100 

4 3.00 11 2 × 1016 1.25 100 

5 3.50 9 5 × 1016 1.00 100 

 

The Maximal Mass 

An evolutionary framework for the development of NSs 

was aided by the initial suggestion by Bethe and 

Johnson (1974) that NSs form towards the conclusion of 

the life of large progenitor stars and by their known 

correlations with supernova remnants. NSs are thought 

to be generated by the collapse of an iron (56Fe and 

neighbouring isotopes) core that originated at the centre 

of progenitor stars with initial masses ranging from 

8 𝑡𝑜 25𝑀⨀, despite an initial diversity of theories being 

put forth. 

Even with early mass measurements, an inaccurate 

association between the iron core before the collapse 

and the Chandrasekhar limit led to the establishment of 

a paradigm for a distinct formation pathway for NSs, 

with a mass scale of about 1.4𝑀⨀ and low dispersion.  
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Figure 1: Mass-Radius Relation 

 

The mass-radius relationship is illustrated in Figure 1, 

showing how the mass of an NS changes with its radius. 

Initially, the radius increases with mass, but it 

eventually decreases due to gravitational collapse. 

According to the simulation result, the maximum mass 

indicated in the figure is 2.33𝑀⨀ at a radius of 12 km, 

which corresponds to a soft EOS. This relationship is 

non-linear due to the effects of the EOS. The findings 

suggest that neutron stars can exceed a mass of 2.0𝑀⨀ 

before collapsing into a BH, a value that was ruled out 

by observations from the NS merger GW170817 since 

the value obtained is supported by current astrophysical 

models. 

These results highlight the balance between 

gravitational forces and the pressure generated by the 

dense matter within the NS. The curve in Figure 1 

represents the maximum mass that an NS can sustain 

before succumbing to gravitational collapse, a process 

that can lead to the formation of black holes. 

Assuming the equation of state above a certain density 

to be as stiff as possible, Rocha, et al (2023) established 

an upper threshold for NS masses at 3.2𝑀⨀, which has 

since been adopted to distinguish NSs from BHs. 

Although there was room for high masses due to 

uncertainties in the early X-ray mass measurements, 

theoretical studies suggested that a few physical EOSs 

could lead to a maximum mass of about 2𝑀⨀, the 

scientific community eventually came to the consensus 

that NS masses should not exceed the “canonical” value 

of 1.4𝑀⨀, which is consistent with the first accurate 

mass measurements, for evolutionary reasons. 

Alternatively put, the value imprinted at birth by 

collapse physics was 1.4𝑀⨀ (Baym, et al, 1971).  

Nonetheless, over time, observational efforts have 

resulted in a steady increase in the number of recorded 

masses. The mass range that NSs encompass has been 

known for more than ten years; the present interval 

extends from 1.17𝑀⨀to values greater than 2.0𝑀⨀, a 

far wider range than was previously believed to be 

conceivable. 

 

Comparison with other researchers EOS 

The results of this research were compared to various 

Equations of State (EOS) from other researchers in the 

literature who employed different numerical models. 

These models varied in their underlying assumptions, 

computational methods, and parameter choices. The 

EOS used by these researchers were tested under similar 

conditions, though the precise temperature, pressure, 

and material properties may differ. Table 2 presents the 

corresponding plots of each EOS, while Figure 2 

illustrates these results graphically, highlighting key 

trends across the various models. 

The simulation results of this study show close 

agreement with those of one researcher, whose model 

employed a similar approach to handling 

thermodynamic interactions and physical properties, 

leading to comparable predictions. However, the 

findings from five other researchers differ significantly, 

as shown in Table 2. These discrepancies may arise due 

to variations in the numerical methods (e.g., finite 

element vs. finite difference methods), differences in 
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boundary conditions, or the use of different reference 

data. In particular, variations in assumptions about the 

ideality of the gas or the form of the intermolecular 

potential may have contributed to the observed 

differences in the results. 

 

Table 2: EOS of other researchers  

S/N EOS 𝚪 𝝆(𝒈𝒄𝒎−𝟑) 

1 SLy 2.488 1.462 × 1014 

2 AP3 3.330 5 × 1017 

3 ALF4 2.400 0.888 × 1014 

4 BBB3 2.909 0.942 × 1014 

5 WFF3 3.224 1014.7 

6 GNH3 2.610 1015 

 

The interior of an NS consists of two main sections: the 

crust and the core. The crust is nearly as dense as 

nuclear matter, indicating it is primarily composed of 

nucleons. However, the core's composition and 

interactions remain poorly understood, despite extensive 

research, as it is significantly denser than nuclear 

density. It's expected that the emergence of exotic 

particles will trigger various phase changes in the core's 

high-density matter. Many studies have compared their 

findings with others on the EOS of an NS matter, 

utilizing different methods to derive the EOS at specific 

densities, radii, and masses. 

Understanding a neutron star's structure and the physics 

driving its interior requires knowledge of its maximum 

mass and radius. Since it controls how matter behaves in 

extreme circumstances, the EOS has a direct impact on 

these parameters. Neutron star observations, especially 

those using pulsar timing and gravity waves, have 

yielded information suggesting upper limits on mass, 

usually in the range of 2 − 2.5𝑀⨀. These results imply 

that the star's radius reduces as the mass gets closer to 

this limit, which could eventually, result in possible 

phase transitions in the core. Investigating these 

correlations advances our understanding of neutron stars 

and clarifies basic interactions in dense matter.  

 

 
Figure 2: The mass-radius relations for ALF4 ALF4, AP3, BBB2, GNH3, WFF3 

and SLy EOSs. The shaded regions depict the imposed mass-radius constraints 

from astronomical observations (Singha, Vaneshwar, & Kumar, 2022) 

 

CONCLUSION 

A theoretical and numerical simulation-based EOS has 

shown that a NS can reach a maximum mass of 2.33𝑀⊙ 

solar masses with a radius of up to 12 km, beyond 

which it is predicted to collapse into a black hole (BH). 

This finding, represented by a mass-radius curve, 

reflects the balance between gravitational pressure and 

internal forces that resist collapse. The model accounts 
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for various factors, such as the nuclear equation of state, 

exotic matter at high densities, and relativistic 

corrections, which influence the star's structure and 

stability. Understanding the mass-radius relationship is 

crucial for determining the maximum stability limits of 

NSs, providing key insights into the formation and 

evolution of compact objects and aiding in the detection 

of gravitational waves from NS mergers. Future 

research should focus on refining EOS models to better 

capture the behavior of neutron star materials under 

extreme conditions, such as high densities where exotic 

particles like quarks and hyperons play a role. Such 

advancements would offer more precise predictions of 

neutron star characteristics, including mass, radius, and 

stability limits. Additionally, exploring the effects of 

extreme temperatures or strong magnetic fields on the 

structure and stability of NSs could further enhance our 

understanding of their formation, particularly in the 

context of supernovae or neutron star mergers. 

 

REFERENCES 

Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., 

Ackley, K., Adams, A., Adams, C., Adhikari, R. X., 

Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., 

Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., 

Ain, A., Ajith, P., Akutsu, T., Zweizig, J. (2021). 

Observation of Gravitational Waves from Two Neutron 

Star–Black Hole Coalescences. The Astrophysical 

Journal, 915(1), L5. https://doi.org/10.3847/2041-

8213/ac082e   

 

Agathos, M., Meidam, J., Del Pozzo, W., Li, T. G. F., 

Tompitak, M., Veitch, J., Vitale, S., & Van Den Broeck, 

C. (2015). Constraining the neutron star equation of 

state with gravitational wave signals from coalescing 

binary neutron stars. Physical Review, 92(2). 

https://doi.org/10.1103/physrevd.92.023012   

 

Baym, G., Pethick, C., & Sutherland, P. (1971). The 

Ground State of Matter at High densities: 

Equation of state and stellar models. The Astrophysical 

Journal, 170, 299. https://doi.org/10.1086/151216  

 

Camenzind, M. (2007). Compact objects in 

astrophysics: white dwarfs, neutron stars and black 

holes. https://cds.cern.ch/record/1339093/files/978-3-

540-49912-1_BookTOC.pdf  

 

Einstein, A. (1915). The field equations of gravitation. 

INSPIRE. https://inspirehep.net/literature/42610 

 

Friedman, J. L., Ipser, J. R., & Parker, L. (1984). 

Models of rapidly rotating neutron stars. Nature, 

312(5991), 255–257. https://doi.org/10.1038/312255a0  

 

Fujimoto, Y., Fukushima, K., & Murase, K. (2021). 

Extensive studies of the neutron star equation of state 

from the deep learning inference with the observational 

data augmentation. Journal of High Energy Physics, 

2021(3). https://doi.org/10.1007/jhep03(2021)273  

 

Haensel, P., Potekhin, A. Y., & Yakovlev, D. G. (2006). 

Neutron Stars 1: Equation of state and Structure. 

https://core.ac.uk/display/44282260  

 

LIGO Scientific Collaboration (2021). Using 

gravitational waves observations to learn about ultra-

dense matter. http://www.ligo.org  Retrieved on 

11:02:2022, 3:58pm. 

 

Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, 

P., Haas, R., Hinder, I., Mundim, B. C., Ott, C. D., 

Schnetter, E., Allen, G., Campanelli, M., & Laguna, P. 

(2012). The Einstein Toolkit: a community 

computational infrastructure for relativistic astrophysics. 

Classical and Quantum Gravity, 29(11), 115001. 

https://doi.org/10.1088/0264-9381/29/11/115001  

 

Oppenheimer, J. R., & Volkoff, G. M. (1939). On 

massive neutron cores. Physical Review, 55(4), 374–

381. https://doi.org/10.1103/physrev.55.374  

 

Radice, D., Perego, A., Zappa, F., & Bernuzzi, S. 

(2018). GW170817: Joint Constraint on the Neutron 

Star Equation of State from Multimessenger 

Observations. The Astrophysical Journal, 852(2), L29. 

https://doi.org/10.3847/2041-8213/aaa402  

 

Rocha, L. S., Horvath, J. E., De Sá, L. M., Chinen, G. 

Y., Barão, L. G., & De Avellar, M. G. B. (2023). Mass 

distribution and maximum mass of neutron stars: Effects 

of orbital inclination angle. Universe, 10(1), 3. 

https://doi.org/10.3390/universe10010003  

 

Shapiro S. L. & Teukolsky, S. A. (1983).  Black Holes, 

White Dwarfs, and Neutron Stars :The Physics of 

Compact Objects. WILEY-VCH Verlag GmbH and Co. 

KGaA,. (n.d.). ISBN 0-471-87317-9.  

 

Vivanco, F. H., Smith, R. J. E., Thrane, E., Lasky, P. D., 

Talbot, C., & Raymond, V. (2019). Measuring the 

neutron star equation of state with gravitational waves: 

The first forty binary neutron star merger observations. 

Physical Review, 100(10). 

https://doi.org/10.1103/physrevd.100.103009   

 

 

https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.1103/physrevd.92.023012
https://doi.org/10.1086/151216
https://cds.cern.ch/record/1339093/files/978-3-540-49912-1_BookTOC.pdf
https://cds.cern.ch/record/1339093/files/978-3-540-49912-1_BookTOC.pdf
https://inspirehep.net/literature/42610
https://doi.org/10.1038/312255a0
https://doi.org/10.1007/jhep03(2021)273
https://core.ac.uk/display/44282260
http://www.ligo.org/
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1103/physrev.55.374
https://doi.org/10.3847/2041-8213/aaa402
https://doi.org/10.3390/universe10010003
https://doi.org/10.1103/physrevd.100.103009

