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ABSTRACT 

The approximate analytical solution of the radial Schrodinger equation has been 

extended to ionic crystal using the Hulthen-type plus modified Kratzer potential 

model, within the framework of Nikiforov-Uvarov method using Greene-Aldrich 

approximation. The aim of combining these potentials is to have a wide application. 

The energy eigenvalues for NaCl, NaF, NaBr and NaI ionic crystals were computed 

for various vibrational and rotational quantum numbers. Special cases were 

considered when the potential parameters were altered, resulting into Hulthen-Type 

Potential and Modified Kratzer Potential. Their energy eigenvalues expressions and 

numerical computations agreed with the already existing literatures. Also, 

spectroscopic parameter for ionic crystals were used in plotting graphical variation 

of the bound state energy eigenvalues for the ionic crystals with different potential 

parameters and quantum numbers were discussed. Our results are in agreement with 

the reports of other researchers. 

INTRODUCTION 

An Ionic crystal is a crystalline form of an ionic 

compound. They are solid consisting of ions bound 

together by their electrostatic attraction into regular 

lattice held together by the electrostatic force of 

attraction (Sherman, 1932). They are good conductors 

of electricity when molten, but very poor in the solid 

state. The exact arrangement of ions in an ionic lattice 

varies according to the size of the ions in the solid 

(Pearson, 1963). 

The exact or approximate solutions of Schrödinger 

equation play an important role in many branches of 

modern physics and chemistry (Chung et al., 1999). The 

solution of this equation is used in the description of 

particle dynamics in non-relativistic regime. (Ikhdair, 

2011; Maghsoodi et al., 2012). Non-relativistic wave 

equations in quantum mechanics cannot be over 

emphasized.as such, non-relativistic spineless particles 

can be described using Schrödinger wave equation 

(Yahya & Oyewumi, 2015), and while in relativistic 

quantum mechanics the Dirac and Klein-Gordon 

equations are frequently used as wave equation. The 

Dirac equation can describe the dynamics of a particle 

with half-integral spin such as fermions. Also, Klein-

Gordon equation is suitable for the description of spin-

zero particle dynamics such as masons. In most cases, 

Schrödinger and Klein-Gordon equations cannot be 

solved analytically except by the using an 

approximation for the centrifugal term. The exact 

solution of the Schrodinger equation with a chosen 

potential model is fundamental for understanding the 

energy spectrum of a particle (Chun-Feng et al., 1991; 

Ikhdair & Falaye, 2013) The exact solution of 

Schrodinger wave equation is only possible for a few 

potential such as harmonic oscillator potential, coulomb 

potential, kratzer potential, etc. (Ikot et al., 2011), while 

others can only be solved approximately (Egrifes  et al., 

2000; Chen & Sun, 2008; Hamzavi et al., 2013), with 

the use of different approximation schemes (Pekeris, 

1934). 

Some of the potential investigated includes: coulomb 

potential (Ma et al., 2014), Eckat potential (Akpan et al., 

2012), Kratzer potential (Berkdemir et al., 2006; 

Hassannabadi et al., 2011), Ring-Shaped potential 

(Dong & Lozada-Cassou, 2006), Hulthen potential 

(Saad, 2007; Ikhdair, 2009), Yukawa potential 

(Ahmadov et al., 2019; Anita et al., 2015 and Ikot et al., 

2013), Rosen-Morse potential (Gu et al., 2008; Qiang & 

Dong, 2007), Woods-Saxon’s potential (Arda, 2009; 

Badalov et al., 2010; Ikhdair & Sever, 2007), and 

several other potentials as well (Nugraha et al., 2017) 

To obtain the approximate or exact solution of quantum 

mechanics equation, different methods have been 

developed like  factorization method (Dong, 2007), 
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Laplace transform approach (Arda & Sever, 2012; Das 

& Arda, 2017), the path integration method (Liu et al., 

2018), the exact quantization method (Gu et al., 2008), 

the Nikiforov-Uvarov method (Anita et al., 2015; 

Ikhdair & Sever, 2007; Nikiforov-Uvarov, 1988; Edet et 

al., 2020), the flite-difference version of the relativistic 

quantum mechanics (Nagiyev & Ahmadov, 2019), and 

singular Manifold method (Saleh et al., 2019), 

Nikiforov-Uvarov (NU) method (Onate & Idiodi, 2015), 

Supersymmetry quantum mechanics (SUSYQM) (Onate 

& Ojonubah, 2013; Onate et al., 2017), Asymptotic 

iteration method (AIM) (Ciftci et al., 2003; Nugraha et 

al., 2017), Proper and exact quantization rule (Qiang & 

Dong, 2007; Ikhdair & Sever, 2009), Factorization 

method (Dong, 2007), Functional Analysis Approach, 

FAA (also known as Modified factorization method) 

(Jia & Jia, 2017), 

In the last few decades, a great deal of interest has been 

raised in many branches of physics in order to calculate 

the energy eigenvalues and Eigen functions of diatomic 

molecules Recently, Ahmadov et al. (2019) solved the 

Klein Gordon (KG) equation with the linear 

combination of Hulthen and Yukawa potential using 

Nikiforov-Uvarov method (Heseyin and sever, 2012). 

However, no study has been reported on the Eigen value 

and Eigen function of ionic crystals with Hulthen-Type 

Potential plus modified kratzer potential with ionic 

crystal dissociation (𝐷𝑒) energy Madelung constant(α) 

and equilibrium bond length parameters (𝑟𝑒) using 

Nikivorov-Uvarov method. With the above mentioned 

studies on these different potentials and their 

importance, we seek to investigate the solutions of 

Schrodinger equation with the linear combination of 

Hulthen-type potential plus modified kratzer potential 

for ionic crystal such as NaCl, NaF, NaBr and NaI. The 

potential takes the form 

𝑉(𝑟) =  −  
𝐴𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟 + 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)

2

  (1) 

Where 𝐷𝑒  the dissociation energy, 𝑟𝑒  is the equilibrium 

internuclear separation, r is the interatomic distance A is 

the depth of the potential, and 𝛼 is madelung constant of 

the ionic crystal. It can be deduced that when 𝐷𝑒 = 0, 

the above combined potential reduces to the Hulthen-

Type Potential Also, when  𝐴 = 0, equation (1) reduces 

to the modified kratzer potential. 

The Hulthen potential is a short range potential which 

behave like a coulomb potential for small values of r 

and decreases exponentially for large values of r. the 

Hulthen potential has been used in many branches of 

physics, such as nuclear physics (Hulthen et al., 1957), 

atomic physics (Tietz, 1961; Lam & Varshni, 1971), 

Solid state physics (Berezin, 1972), and chemical 

physics (Pyykko & Jokisaari, 1975).The model of the 

three-dimensional delta-function could well be 

considered as Hulthen potential with the radius of the 

force going down to zero (Berezin, 1986). The 

Schrödinger equation for this potential can be solved in 

a closed form for s-waves. For ℓ ≠ 0, a number of 

method have been employed to find approximate 

solution for the Schrödinger equation with the Hulthen 

potential (Lai, 1980; Patil, 1984; Popov & Wienberg, 

1985; Roy & Roychoudhury, 1987).  The Hulthen-Type 

potential which is a modified Hulthen potential is used 

in the work 

The Modified kratzer potential (Kratzer, 1920) is mostly 

applied in atomic physics, physics and quantum 

chemistry (Sadeghi, 2007), and it is used to describe the 

interactions of molecules in quantum mechanics. The 

potential is made up of a long-range attraction and a 

repulsive part. The integration of these parts makes this 

potential reliable in terms of its vibrational and 

rotational energy eigenvalues (Roy & Bernstein1970; 

Bayrak, 2017). The potential is known to approach 

infinity when the internuclear distance approaches zero, 

due to the repulsion that exist between the molecules of 

the potential. As the internuclear molecular distance 

approaches infinity, the potential decomposes to zero 

(Saad et al., 2008; Hassanabadi et al., 2011).   

 

MATERIALS AND METHODS 

Overview of Nikiforov-Uvarov Method 

The Nikiforov-Uvarov (NU) method is based on solving 

the hypergeometric-type second –order differential 

equations by means of the special orthogonal functions 

(Szego, 1939), using coordinate transformation 

appropriately. The basic equation of NU method is 

given in the form: (Karayer et al., 2015; Pahlavani, 

2012; Nikiforov & Uvarov, 1988): 

𝜓″(𝑠) +
�̃�(𝑠)

𝜎(𝑠)
𝜓′(𝑠) +

�̃�(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0  (2) 

where �̃�(𝑠) is a polynomial of at most first-degree, 

while 𝜎(𝑠) and �̃�(𝑠) are polynomials of at most second-

degree 𝜓(𝑠) is a function of hypergeometric-type.  

𝜓(𝑠) = 𝜙(𝑠)𝑦(𝑠)   (3) 

then Equation (2) reduces to hypergeometric-type: 

𝜎(𝑠)𝑦″ + 𝜏(𝑠)𝑦′ + 𝜆𝑦 = 0   (4) 

where 

𝜆 = 𝜆𝑛 = −𝑛𝜏 ′ −
𝑛(𝑛−1)

2
𝜎″,  𝑛 = 0,1,2, . .. (5) 

and 𝜏(𝑠) is defined as: 

𝜏(𝑠) = �̃�(𝑠) + 2𝜋(𝑠)   (6) 

which must have a negative derivative. Equation (7) has 

polynomial solutions 𝑦𝑛(𝑠) that are given by the 

Rodrigues relation 

𝑦𝑛(𝑠) =
𝐵𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝑠𝑛
[𝜎𝑛(𝑠)𝜌(𝑠)]  (7) 

where 𝐵𝑛 is the normalization constant and 𝜌(𝑠) is 

called the density or weight function and must satisfy 

the condition 

(𝜎𝜌)′ = 𝜏𝜌    (8) 

The function 𝜙(𝑠) satisfies 
𝜙′

𝜙
=

𝜋

𝜎
     (9) 
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where 𝜋(𝑠) and the parameter 𝜆 are defined as 

𝜋(𝑠) =
𝜎′(𝑠)−�̃�(𝑠)

2
± √(

𝜎′(𝑠)−�̃�(𝑠)

2
)

2

− �̃�(𝑠) + 𝑘(𝑠)𝜎(𝑠) 

     (10) 

and 

𝜆 = 𝑘 + 𝜋 ′    (11) 

The function 𝜋(𝑠) is a polynomial of first degree at 

most and thus the expression under the square root in 

Equation (10) must be a square of a polynomial of first 

degree. The determination of 𝑘 is thus important in the 

calculation of 𝜋(𝑠).  

 

Approximate analytical solutions of the Hulthen-Type Potential Plus Modified Kratzer potential 

The Schrödinger equation for motion of a particle with the reduced mass u in the spherical symmetric potential 

described by the spherical coordinates is given by   
−ћ2

2𝜇
[

𝜕2

𝜕𝑟2 +
2

𝑟

𝜕

𝜕𝑟
+

1

𝑟2 (
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕∅2) + 𝑉(𝑟)] 𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝐸𝑛𝑙𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙)    (12) 

In order to obtain the bound state solution of   ℓ ≠ 0, we insert the potential in equation (1) into equation (13) then 

the equation becomes: 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 +
2𝜇

ћ2 [𝐸𝑛𝑙 − 𝑉(𝑟) −
ℓ(ℓ+1)ћ2

2𝜇𝑟2 ] 𝑅𝑛𝑙(𝑟) = 0       (13) 

Where 𝜇 is the reduced mass, 𝐸𝑛𝑙 is the rotational vibrational energy spectra of the ionic molecule, ћ is the reduced 

plank’s constant, and n and ℓ are the radial and orbit angular momentum quantum numbers respectively 

 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 +
2𝜇

ћ2 [𝐸𝑛𝑙  +  
𝐴𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟 − 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)

2

−
ℓ(ℓ+1)ћ2

2𝜇𝑟2 ] 𝑅𝑛𝑙(𝑟) = 0     (14) 

𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 +
2𝜇

ћ2 [𝐸𝑛𝑙 +
𝐴𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟 − 𝑫𝒆 +
𝟐𝑫𝒆𝒓𝒆

𝒓
−

𝑫𝒆𝒓𝒆
𝟐

𝒓𝟐 +  
𝑨𝒆−𝟐𝜶𝒓

𝒓
−

ℓ(ℓ+1)ћ2

2𝜇𝑟2 ] 𝑅𝑛𝑙(𝑟) =    (15) 

𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 + [
2𝜇

ћ2 𝐸𝑛𝑙 +
2𝜇

ћ2

𝐴𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟 −
2𝜇

ћ2 𝑫𝒆 +
4𝜇

ћ2

𝑫𝒆𝒓𝒆

𝒓
−

2𝜇

ћ2

𝑫𝒆𝒓𝒆
𝟐

𝒓𝟐 −
ℓ(ℓ+1)

𝑟2 ] 𝑅𝑛𝑙(𝑟) = 0    (16) 

We employ the Pekeris approximation scheme (Pekeris, 1934) to get rid of the centrifugal barrier 
1

𝑟2 ≈
𝟒𝜶2𝑒−2𝛼𝑟

(1−𝑒−𝟐𝜶𝒓)
2           (17) 

1

𝑟
≈

2𝛼𝑒−2𝛼𝑟

(1−𝑒−𝟐𝜶𝒓)
           (18) 

𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 + [
2𝜇

ћ2
(𝐸𝑛𝑙 − 𝑫𝒆) +

2𝜇𝐴𝑒−2𝛼𝑟

ћ2(1−𝑒−2𝛼𝑟)
+

4𝜇𝑫𝒆𝒓𝒆

ћ2

2𝛼𝑒−2𝛼𝑟

(1−𝑒−𝟐𝜶𝒓)
−

2𝜇𝑫𝒆𝒓𝒆
𝟐

ћ2

𝟒𝜶2𝑒−2𝛼𝑟

(1−𝑒−𝟐𝜶𝒓)
2 + −

ℓ(ℓ+1)𝟒𝜶2𝑒−2𝛼𝑟

(1−𝑒−𝟐𝜶𝒓)
2 ] 𝑅𝑛𝑙(𝑟) = 0

            (19) 

by using the coordinate transformation  

𝑠 =  𝑒−𝟐𝜶𝒓           (20) 
we obtain the differential equation of the form 
𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 + [
2𝜇

ћ2
(𝐸𝑛𝑙 − 𝑫𝒆) +

2𝜇𝐴𝑠

ћ2(1−𝑠)
+

8𝜇𝑫𝒆𝒓𝒆

ћ2

𝛼𝑠

(1−𝑠)
−

8𝜇𝑫𝒆𝒓𝒆
𝟐

ћ2

𝜶2𝑠

(1−𝑠)2 −
4ℓ(ℓ+1)𝜶2𝑠

(1−𝑠)2 ] 𝑅𝑛𝑙(𝑟) = 0  

            (21) 

Equation (21) can be simplified into the form 
𝑑2𝑅𝑛𝑙(𝑠)

𝑑𝑠2 +
(1−𝑠)

𝑠(1−𝑠)

𝑑𝑅

𝑑𝑠
+

1

𝑠2(1−𝑠)2
[−ℰ𝑛(1 − 𝑠)2 + 𝛽𝑠(1 − 𝑠) + 𝛾𝑠(1 − 𝑠) − 𝛿𝑠 − 𝜔𝑠]𝑅𝑛𝑙(𝑠) = 0  

            (22) 

ℰ𝑛 = −
𝜇

𝟐𝜶2ћ2
(𝐸𝑛𝑙 − 𝑫𝒆)           

𝛽 =
𝜇𝑨

2𝛼ћ2           

𝛾 =
2𝜇𝑫𝒆𝒓𝒆

𝛼ћ2          

𝛿 =
2𝜇𝑫𝒆𝒓𝒆

𝟐

ћ2            

𝜔 = ℓ(ℓ + 1)           (23) 
𝑑2𝑅𝑛𝑙(𝑠)

𝑑𝑠2 +
(1−𝑠)

𝑠(1−𝑠)

𝑑𝑅

𝑑𝑠
+

1

𝑠2(1−𝑠)2
[−(ℰ𝑛 + 𝛽 + 𝛾)𝑠2 + (2ℰ𝑛 + 𝛽 + 𝛾 − 𝛿 − 𝜔)𝑠 − (ℰ𝑛)]𝑅𝑛𝑙(𝑠) = 0  (24) 

Comparing equation (2) and (24) we have the following parameters 

 �̃� = 1 − 𝑠 

𝜎 = 𝑠(1 − 𝑠)  

�̃�(𝑠) = −(ℰ𝑛 + 𝛽 + 𝛾)𝑠2 + (2ℰ𝑛 + 𝛽 + 𝛾 − 𝛿 − 𝜔)𝑠 − (ℰ𝑛)      (25) 

Substituting these polynomials into equation (10) we obtained 
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𝜋(𝑠) = −
𝑠

2
± √(𝑎 − 𝑘)𝑠2 + (𝑘 + 𝑏)𝑠 + 𝑐        (26) 

where 

𝑎 =
1

4
+ ℰ𝑛 + 𝛽 + 𝛾  

𝑏 = −2ℰ𝑛 − 𝛽 − 𝛾 + 𝛿 + 𝜔         (27) 

𝑐 = ℰ𝑛  

To find the constant k, the discriminant of the expression under the square root of equation (26) must be zero. As 

such we have 

𝜋(𝑠) = −
𝑠

2
± (√

1

4
+ 𝛿 + 𝜔 + √ℰ𝑛) 𝑠 − √ℰ𝑛        (28) 

 𝑓𝑜𝑟 𝑘± = −(−𝛽 − 𝛾 + 𝛿 + 𝜔) + 2√ℰ𝑛√
1

4
+ +𝛿 + 𝜔      (29)  

From the knowledge of NU method, we choose the expression 𝜋(𝑠)−in which the function π(s) has negative 

derivative. This is given by 

𝜋(𝑠)− = −
𝑠

2
− (√

1

4
+ 𝛿 + 𝜔 + √ℰ𝑛) 𝑠 − √ℰ𝑛         (30) 

Where τ(s) being obtained as 

τ(s) = 1 − 2𝑠 − 2 (√
1

4
+ 𝛿 + 𝜔 + √ℰ𝑛) 𝑠 + 2√ℰ𝑛        (31) 

Referring to equation (11), we define the constant λ as  

𝜆 = −(−𝛽 − 𝛾 + 𝛿 + 𝜔) + 2√ℰ𝑛√
1

4
+ +𝛿 + 𝜔 −

1

2
− (√

1

4
+ +𝛿 + 𝜔 − √ℰ𝑛)    (32) 

Substituting equation (30) into equation (5) and carrying out simple algebra, where 

𝜏′(𝑠) = −2 − 2 (√
1

4
+ 𝛿 + 𝜔 + √ℰ𝑛)        (32) 

And  

𝜎″(𝑠) = 2           (34) 

We have 

ℰ𝑛 =
1

4
[

(𝑛+
1

2
+√

1

4
+𝛿+𝜔)

2

−𝛽−𝛾

(𝑛+
1

2
+√

1

4
+𝛿+𝜔)

]

2

         (35) 

 

ℰ𝑛 =
1

4
[

(𝑛+𝜉)2−𝛽−𝛾

(𝑛+𝜉)
]

2

          (36) 

Where  

𝜉 =
1

2
(1 + 2√

1

4
+ 𝛿 + 𝜔)          (37) 

Substituting equation (22) and (37) into (36) yields the energy eigen equation of the Hulthen-type potential plus 

modified kratzer potential in the form 

𝐸𝑛𝑙 = 𝑫𝒆 −
𝜶2ћ2

2𝜇
[

(𝑛+
1

2
+√1

4
+

2𝜇𝑫𝒆𝒓𝒆𝟐

ћ2 +ℓ(ℓ+1))

2

−
𝜇𝑨

2𝛼ћ2−
2𝜇𝑫𝒆𝒓𝒆

𝛼ћ2

(𝑛+
1

2
+√1

4
+

2𝜇𝑫𝒆𝒓𝒆𝟐

ћ2 +ℓ(ℓ+1))

]

2

      (38) 

The Corresponding wave function can be evaluated by substituting  𝜋(𝑠)− and 𝜎(s) from equation (30) and (25) 

respectively into equation (9) and solving the first-order differential equation. This gives 

𝜙(𝑠) = 𝑠√ℰ𝑛(1 − 𝑠)
1

2
+√

1

4
+𝛿+𝜔

          (39) 

The weight function ρ(s) from eq (8) can be obtained as 

𝜌(𝑠) = 𝑠2√ℰ𝑛(1 − 𝑠)
2√

1

4
+𝛿+𝜔

         (40) 

From Rodrigues relation of eq (7), we obtain 

𝑦𝑛(𝑠) = 𝐵𝑛𝑠−2√ℰ𝑛(1 − 𝑠)
2√

1

4
+𝛿+𝜔

[𝑠𝑛+2√ℰ𝑛(1 − 𝑠)
𝑛+2√

1

4
+𝛿+𝜔

]     (41) 
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𝑦𝑛(𝑠) = 𝐵𝑛𝑃𝑛

(2√ℰ𝑛,2√
1

4
+𝛿+𝜔)

(1 − 2𝑠)        (42) 

Where 𝑃𝑛
(𝜃,𝜗)

 is the Jacobi polynomial. 

Substituting ϕ(s) and  𝑦𝑛(𝑠) from equation (39) and (41) respectively, into equation (3) we obtain 

𝜓(𝑠) = 𝐵𝑛𝑠√ℰ𝑛(1 − 𝑠)𝐺𝑃𝑛
(2√ℰ𝑛, 2𝐺−1)

(1 − 2𝑠)       (43) 

Where   

𝐺 =
1

2
+ √

1

4
+ 𝛿 + 𝜔          (44) 

From the definition of Jacobi polynomials (Abramowitz & Stegub, 1964) 

𝑃𝑛
(𝜃,𝜗)

(𝜔) =
Г(𝑛+𝜃+1)

𝑛!Г(𝜃+1)
𝐹1 (−𝑛, 𝜃 + 𝜗 + 𝑛 + 1;

1−𝜔

2
)2        (45) 

In terms of hypergeometric polynomials, equation (43) can be written as  

𝜓(𝑠) = 𝐵𝑛𝑠√ℰ𝑛(1 − 𝑠)𝐺 Г(𝑛+2√ℰ𝑛+1)

𝑛!Г(√ℰ𝑛+1)
𝐹1(−𝑛, 2√ℰ𝑛 + 2𝐺 + 𝑛, 2√ℰ𝑛 + 1; 𝑠)2     (46) 

Special Cases 

In this section, we make some adjustments of constant in equation (3) to have the following cases 

 

Hulthen-type potential 

If 𝐷𝑒 = 0 in equation (1), we can obtain the Hulthen-type potential as  

𝑉(𝑟) =  −  
𝐴𝑒−2𝛼𝑟

1−𝑒−2𝛼𝑟          (47) 

From equ (38), the energy eigenvalue equation for the Hulthen-type potential reduces to 

𝐸𝑛𝑙 = −
𝜶2ћ2

2𝜇
[

(𝑛+
1

2
+√

1

4
++ℓ(ℓ+1))

2

−
𝜇𝑨

2𝛼ћ2

(𝑛+
1

2
+√

1

4
++ℓ(ℓ+1))

]

2

        (48) 

The result in equation (48) is very consistent with the result obtained in equation (18) of Ramantswana et al. (2023)  

 

Modified Kratzer Potential 

When the parameter A is set to zero equation (1) reduces the potential to the modified Kratzer potential as   

   

𝑉(𝑟) = 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)

2

         (49) 

And its energy eigenvalue equation can also be deduced from equation (38) as 

𝐸𝑛𝑙 = 𝑫𝒆 −
𝜶2ћ2

2𝜇
[

(𝑛+
1

2
+√1

4
+

2𝜇𝑫𝒆𝒓𝒆𝟐

ћ2 +ℓ(ℓ+1))

2

−
2𝜇𝑫𝒆𝒓𝒆

𝛼ћ2

(𝑛+
1

2
+√1

4
+

2𝜇𝑫𝒆𝒓𝒆𝟐

ћ2 +ℓ(ℓ+1))

]

2

       (50) 

As 𝛼 → 0 we obtain the energy eigenvalue for modified Kratzer potential to be 

𝐸𝑛𝑙 = 𝑫𝒆 −
ћ2

2𝜇
[

2𝜇𝑫𝒆𝒓𝒆
ћ2

(𝑛+
1

2
+√1

4
+

2𝜇𝑫𝒆𝒓𝒆𝟐

ћ2 +ℓ(ℓ+1))

]

2

        (51) 

The result in equation (51) is very consistent with result of equation (14) Berkdemir et al. (2006) 

 

RESULTS AND DISCUSSION 

In our study, the energy eigenvalues (in eV) of the 

Hulthen-type potential and the modified Kratzer 

potential were computed for NaCL, NaBr, NaF and NaI 

ionic crystals using eq (38) , with the aid of the ionic 

spectroscopic parameters given in table 1. Our results 

are consistent with the results obtained by Bayrat et al. 

(2007). Also it is observed that in table 2, the energy 

eigen value become more bounded as the quantum state 

of these crystals increases. Special cases were 

considered when the potential parameters were altered, 

resulting into Hulthen-Type Potential and Modified 

Kratzer Potential. We plotted the variation of the non-

relativistic energy eigenvalues with the different 

potential parameters such as  𝑟𝑒 , 𝛼, 𝐷𝑒 , ℓ, 𝜇, 𝑎𝑛𝑑 𝑛 as 

shown in figure a-f respectively, for various values of n 

and ℓ quantum numbers.in this figures, there is an 

increase in energy eigenvalues as the various parameter 

increases. In fig a, b c and e, the increase in energy 

tends to spread out from zero position for different 

potential parameter such as   𝑟𝑒 , 𝛼, 𝐷𝑒  𝑎𝑛𝑑   𝜇 

respectively. We also observe a uniform increase in 
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energy as the parameter 𝜇 increases. Fig d shows a slide 

increase in the energy, with only NaF taking its source 

from the zero point. Also for Figure 1 (f), the increase in 

energy eigenvalue is uniform with only NaF again 

taking its source from the origin. From graphs plotted, 

the vibrational quantum numbers show less effect on the 

energy eigenvalue than the rotational quantum numbers. 

  

Table 1: Spectroscopic parameters for ionic crystals 

Ionic Crystals 𝒓𝒆(A) 𝑫𝒆(eV) 𝜶 𝝁(a.m.u) 

NaCl 2.36 4.26 1.746941 13.94623 

NaBr 2.50 3.80 1.746941 17.85312 

NaF 1.93 4.99 1.746941 10.40219 

NaI 2.71 3.10 1.746941 19.46370 

 

Table 2: Energy eigenvalues in (eV) of Hulthen-type potential plus modified Kratzer potential for different 

values of n and 𝓵 for different ionic crystal 

n l Nacl NaBr NaF NaI 

0 0 -35.90594216 -36.59173994 -22.07152705 -38.42360954 

      

1 0 

1 

-36.24700260 

-36.24786114 

-38.07619532 

-38.07687012 

-22.40993224 

-22.41104750 

-38.71043558 

-38.71105932 

      

2 0 

1 

2 

-36.58915599 

-36.59001731 

-36.59173994 

-38.38055564 

-38.38123231 

-38.38258566 

-22.74991379 

-22.75103421 

-22.75327504 

-38.99801818 

-38.99864360 

-38.99989440 

      

3 0 

1 

2 

3 

-36.93240068 

-36.93326473 

-36.93499280 

-36.93758498 

-38.68575538 

-38.68643392 

-38.68779101 

-38.68982666 

-23.09146714 

-23.09259273 

-23.09484386 

-23.09822061 

-39.28635654 

-39.28698357 

-39.28823764 

-39.29011877 

      

4 0 

1 

2 

3 

4 

-37.27673482 

-37.27760158 

-37.27933520 

-37.28193550 

-37.28540267 

-38.99179346 

-38.99247384 

-38.99383466 

-38.99587592 

-38.99587592 

-23.43458785 

-23.43571858 

-23.43798000 

-23.44137218 

-23.44589519 

-39.57544970 

-39.57607836 

-39.57733574 

-39.57922176 

-39.58173645 

      

5 0 

1 

2 

3 

4 

5 

-37.62215668 

-37.62302622 

-37.62476524 

-37.62737376 

-37.63085184 

-37.63519944 

-39.29866882 

-39.29935106 

-39.30071559 

-39.30276242 

-39.30549144 

-39.30890279 

-23.77927148 

-23.78040734 

-23.78267904 

-23.78608661 

-23.79063013 

-23.79630964 

-39.86529684 

-39.86592713 

-39.86718776 

-39.86907872 

-39.87159996 

-39.87475154 
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Figure 1: (a) Energy eigenvalues variation with equilibrium bond length for various Ionic crystal (b) Energy 

eigenvalues variation with for various Ionic crystal Madelung constant (c) Energy eigenvalues variation with 

dissociation energy for various Ionic crystal (d) Energy eigenvalues variation with angular momentum for various 

Ionic crystal (e) Energy eigenvalues variation with reduced mass for various Ionic crystal (f) Energy eigenvalues 

variation with principal quantum  

number for various Ionic crystal. 

 

CONCLUSION  

In this work, the approximate bound state solution of 

Schrodinger equation with Hulthen-type potential plus 

modified Kratzer potential were obtained, via the 

Nikifiriv-Uvarov method. The energy eigenvalues of the 

selected ionic crystals (NaCL, NaBr, NaF, and NaI) 

were computed, and a special case was considered. Our 

results are consistent with the results in the available 

literature.  In addition, we presented the variations of the 

energy eigenvalues with the potential parameters such 

as the equilibrium bond length, Madelung constant, 

dissociation energy, angular momentum, reduced mass 

and rotational quantum number and were discussed 

graphically and it was noted that the energy eigenvalues 

increase as the various potential parameters increases. 

Recently, there has been investigation into areas 

covering vibrational partition function and their 

thermochemical properties of diatomic molecules, 

a b 

c 

d 

e 
f 
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which can be extended to ionic crystals. Worth 

mentioning is the current research done on the 

prediction of enthalpy and entropy of gaseous dimer that 

can also be extended to ionic crystals. The result 

obtained in this study finds application in quantum 

chemistry, molecular physics amongst others. And can 

be extended to relativistic regime using other methods. 
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