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ABSTRACT 

The Composites of Al-Doped LiMn2O4; Al0.1:(LiMn2O4)0.9 and AI0.3:(LiMn2O4)0.7, 

were prepared using the hydrothermal method and drop casting deposition 

technique. The electrochemical performance of the Al-doped LiMn2O4 composite as 

a promising anode material for lithium-ion batteries was characterised by cyclic 

voltammetry analysis, electrochemical impedance spectroscopy and galvanostatic 

charge discharge analysis. The anodes' material exhibits a reversible capacity loss, 

which can be primarily linked to reverse reactions within the solid electrolyte 

interface formation, aluminium adsorption in the conducting LiMn2O4, and the 

electrolyte's electrochemical breakdown. The charges that are retained in the anode 

material during charging showed a linear decline in charge capacity as charging 

current intensity increased. Ionic polarisation was the reason for the observed drop 

in the charge and discharge capabilities at the current density of 5 A/g. Having 

greater specific capacitance and energy density, the composite Al0.1:(LiMn2O4)0.9, is 

a better anode material for electrochemical applications compared to 

Al0.3:(LiMn2O4)0.7, also its comparatively higher power density at a scan rate of 5 

mV/s is mostly explained by its lower equivalent series resistance. 

INTRODUCTION 

Lithium-ion battery (LIB) technology is thought to be in 

development. However, they must perform better for 

contemporary applications in order to achieve high 

columbic efficiency, increase power and energy 

densities. The materials used and the production 

processes have a significant impact on the ultimate cost 

of a LIB (Ali et al., 2022; Adesina, et al., 2021; Kumar, 

et al., 2019; Shichen et al., 2023). It is necessary to note 

that in this industrial period there has seen a sharp rise 

in the need for energy. Due to their low cost, light 

weight, and ease of storage, fossil fuels; first carbon, 

then oil, and finally natural gas have been systematically 

exploited to power cities and factories (Chen et al., 

2019; Ahmad et al., 2016; Zhao et al., 2020; Zhang, et 

al., 2019). But these sources also release a lot of toxic 

chemicals, such as carbon monoxide, sulphur dioxide, 

and different nitrogen oxides, making them unfriendly 

to the environment (Wang et al., 2020). The energy 

sector has seen new trends and opportunities brought 

about by the lithium-ion battery, particularly in the 

burgeoning electric car market. Lithium-ion batteries 

need to be continuously improved in terms of capacity, 

power output, life cycle, and safety in order to meet the 

demands of such applications (Yan et al., 2020; Singh et 

al., 2021; Zhang et al., 2019). One way to improve these 

characteristics is to create a more effective and excellent 

anode electrode material (Diantoro et al., 2024; Zhang 

et al., 2020). 

This work is aimed at synthesising and investigating the 

electrochemical properties of aluminium doped 

LiMn2O4 as an alternative anode material in LIBs which 

could be more sustainable and have reduced production 

costs compare to other graphitic materials. 

The specific capacitance (Csp) was evaluated from the 

equation: 

Csp=
𝑆

2𝑚𝑘(𝐸)
    (1) 

S in (mA.V); m in (g); K in 𝑚𝑣 𝑠⁄ ; and E in (V). 

According to Alpha et al. (2019) and Zhang, et al. 

(2020), the energy density (ED) and power density (PD) 

were calculated using Equations (2) and (3) 

ED=
1

4
𝐶spV2    (2) 

PD=
𝑉2

4×(𝐸𝑆𝑅)𝑚
    (3) 
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MATERIALS AND METHODS 

Materials 

The chemicals used in this study were of analytical 

grade with a percentage purity in the range of 99.892 % 

- 99.999 %. Presented in Table 1 are the lists of 

chemicals used as precursor materials 

 

Table 1: List of chemicals used as precursor materials  

Chemicals Chemical formula Manufacturer (Company) Purity 

Lithium manganese IV oxide LiMn2O4 Merck 99.995 % 

Aluminium Carbonate Al2(CO3)3 Merck 99.995 % 

Polyvinylidene fluoride -(CH2=CF2)n- Merck 99.892 % 

Ethanol CH3CH2OH Merck 99.995 % 

N-methyl-2-pyrrolidone (NMP) C5H9NO Merck 99.999 % 

De-ionized water  H2O - 99.995 % 

Distilled water H2O - 99.995 % 

 

Method 

Synthesis Al doped LiMn2O4 Composites 

20 g of the LiMn2O4 powder, 0.1 mol/L aluminium 

carbonate solution were added to 1000 ml of distilled 

water and then stirred using a magnetic stirrer for 3 

hours to obtain a composite, Al0.1:(LiMn2O4)0.9. The 

composite was then filtered, after which the mixture was 

sonicated at 78.8 oC for 3 hours. After sonication, the 

sample was then washed with ethanol and dried in an 

electrical oven at 75 oC for 3 hours. The composite, 

Al0.1:(LiMn2O4)0.9, was then grinded into a fine powder 

using a piston and mortar. Also, another 20 g of 

LiMn2O4 powder, 0.3 mol/L aluminium carbonate 

solution were added to 1000 ml of distilled water, and 

then stirred using a magnetic stirrer for 3 hours to obtain 

a composite, Al0.3:(LiMn2O4)0.7. The composite was 

then filtered, after which the mixture was sonicated at 

78.8 oC for 3 hours. After sonication, the composite was 

then washed with ethanol and dried in an electrical oven 

at 75 oC for 3 hours. The composite, Al0.3:(LiMn2O4)0.7, 

was then grinded into a fine powder using a piston and 

mortar.   
 

Preparation of Composites for Characterisation  

In the preparation of the composite material for 

characterisation, a stainless-steel substrate was used. 

The substrate was first smoothened after which it was 

washed with distilled water. The substrate was then 

soaked in an acetone for 1 hour before washing again 

with distilled water, after which it was ultrasonicated for 

30 minutes and then dried in an electric oven for 1 hour.  

The electrode material was prepared using the drop 

casting method of deposition. 90 % sample provide, 10 

% polyvinylidene fluoride (PVDF) binder were 

dissolved in N-methyl-2-pyrrolidone (NMP) solvent and 

stirred for 5 hours until it formed slurry. It was then 

loaded uniformly onto the treated stainless-steel 

substrate. After deposition, it was then dried in an 

electric oven at 120 oC for 5 hours. The electrode is 

formed and ready for characterisaion.  

 

 
Figure 1: Schematic diagram for the hydrothermal synthesis of Al0.1:(LiMn2O4)0.9 and 

Al0.3:(LiMn2O4)0.7 
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The electrochemical analysis was carried out in a three 

electrode configuration with the active material serving 

as the working electrode, Ag/AgCl serving as the 

reference through which current flows into the system 

at a potential window voltage of 0.9 V at a 5 mV/s 

scan rate and a glassy carbon rod serving as the counter 

electrode through which the current flows out. A 2 M 

KOH aqueous solution served as the electrolyte, which 

provided a medium for current flow and ion 

interaction, using the electrochemical analyser model 

CH1604E.  

 

 

 

RESULTS AND DISCUSSION 

Structural Analysis 

X-ray Diffraction (XRD) Analysis for 

Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7 

Figure 2 shows the stacked crystallites of the XRD 

pattern for Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7. 

This shows the most preferred orientation to be at the 

diffraction plane (101) (111), and (100) at Bragg’s 

angles of 27.200, 25.290, and 23.260, respectively both 

composites. This indicated the presence of the 

crystalline structure of the Al3+ and Li+ in the network 

of the Mn2O4. At higher Bragg’s diffraction angles 

between 300 and 700, the composites are almost 

completely amorphous impurities. 

 

 
Figure 2: XRD pattern for Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7 

 

FTIR Spectra Analysis for Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7 

The FTIR spectra for Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7 were shown in Figure 3.  
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Figure 3: FTIR for (a) Al0.1:(LiMn2O4)0.9 and (b) Al0.3:(LiMn2O4)0.7 

 

The aluminium oxygen functional group was detected in 

the spectra for both composites between 400 and 

1721.12 cm-1, indicating absorption brought on by the 

bond molecules. This revealed the features of the 

oxygen molecules' sp3 vibration, which fall within the 

group frequency range. At the characteristic peaks, 

2934.88 cm-1 and 2926.14 cm-1, for Al0.1:(LiMn2O4)0.9 

and Al0.3:(LiMn2O4)0.7, receptively, the aluminium 

oxygen ionic bond was typical at the characteristic 

peaks, 2934.88 cm-1 and 2926.14 cm-1. The structural 

distortion of the LiMn2O4 may have been the cause of 

this change.  This might have resulted from the Al ion 

being introduced into the LiMn2O4 structure's inter-

planner space, which changed the bond distances 

between the Al, Mn, O, and Li atoms. This structural 

deformation enhances ionic transport during the 

electrochemical process.   

 

Electrochemical Analysis 

Figure 3 shows the cyclic voltammograms from the 

cyclic voltammetry analysis for Al0.1:(LiMn2O4)0.9 and 

Al0.3:(LiMn2O4)0.7 respectively at scan rates of 3 and 5 

mVs-1, current density of 100 mA/g. Figures 4 and 5 

give the plots for the GCD at 5 A/g for 

Al0.1:(LiMn2O4)0.9, and Al0.3:(LiMn2O4)0.7. Figures 6 and 

7 provide the Nyquist plots from the Electrochemical 

Impedance Spectroscopy analysis for Al0.1:(LiMn2O4)0.9, 

and Al0.3:(LiMn2O4)0.7 composites. 

 

Cyclic Voltammetry Analysis 

The values of Csp, ED and PD were computed using 

Equations 1, 2, and 3. The summary of the results from 

the electrochemical analysis for the Al0.1:(LiMn2O4)0.9 

and Al0.3:(LiMn2O4)0.7 composite at scan rates of 3 and 5 

mVs-1 are given in Tables 2 and 3. 

Table 2: The Values of CSP and ED and PD @ 3mV/s 

Composite Mass (g) Potential (V) ERS (Ω) Csp (F/g) ED (Wh/kg) PD (kW/kg) 

Al0.1:(LiMn2O4)0.9 0.119 1.4 2.0 847.99 115.40 2.059 

Al0.3:(LiMn2O4)0.7 0.119 1.4 2.5 484.80 66.00 1.647 

 

Table 3: The Values of CSP and ED and PD @ 5mV/s 

Composite Mass (g) Potential (V) ERS (Ω) Csp (F/g) ED (Wh/kg) PD (kW/kg) 

Al0.1:(LiMn2O4)0.9 0.119 1.4 2.0 508.799 53.075 0.349 

Al0.3:(LiMn2O4)0.7 0.119 1.4 2.5 353.57 36.7630 0.349 

 

Shown in Figure 4 are the CV curves of the samples 

acquired at scan rates of 3 and 5 mVs−1 between 0.0 and 

1.4 V potential window. The insertion or extraction of 

aluminium from the K LiMn2O4 lattice was shown to 

correlate to only one pair of redox peaks. Aluminium is 

also extremely reversible when it comes to its insertion 

or extraction from the LiMn2O4 composite because the 

CV curves for the cycles are nearly identical. The anode 

material exhibits a significant reversible capacity loss, 

which is primarily explained by side reactions including 

solid electrolyte interface (SEI) formation, aluminium 

adsorption, and the electrochemical electrolyte 

breakdown. The composite Al0.1:(LiMn2O4)0.9 at a scan 

rate of 3 mV/s gives a higher specific capacitance, 

energy density, and power density, thereby making it a 

more suitable anode material when used in battery 

applications this agrees with alpha et al. (2019). The 

composite Al0.1:(LiMn2O4)0.9 at a scan rate of 5 mV/s 

still maintains a relatively higher power density, this is 

mainly attributed to its lower equivalent series 

resistance. 
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Figure 4: Cyclic Voltamogramm curve at different scan rates for Al0.3:(LiMn2O4)0.7 and 

Al0.3:(LiMn2O4)0.7 composites 

 

GCD Characterisation 

The cyclic voltammetry results, which show that redox 

currents are only set up in this voltage range with an 

oxidation peak around 0.9 V, demonstrate that the 

primary cause of the change in the charging voltage is 

Al3+ insertion (the voltage decreases) and extraction (the 

voltage increases) into and from the LiMn2O4 anode. 

High currents indicate rapid changes in the Al ion 

concentration within the LiMn2O4 structure's lamellar 

planes, which in turn implies quick changes in the anode 

potential over a short amount of time. The values of the 

specific capacitance and energy densities for 

Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7  respectively at 

current density of 5 A/g  for the GCD are shown in 

Tables 4 and 5. The charge stored in the anode material 

during charging is represented by a linear reduction in 

charge capacity with increasing charging current 

intensity, as seen in Figures 5 and 6. 

 

Table 4:  Values of CSP and ED for Al0.1:(LiMn2O4)0.9 @5A/g and 1.4 V for GCD 

 First cycle  Second cycle  Third cycle  Fourth cycle  Fifth cycle  

ΔT  69.15 68.97 68.14 67.91 66.72 

ΔV 1.4 1.4 1.4 1.4 1.4 

CSP  246.96 246.32 243.34 242.53 238.28 

ED  33.613 33.526 33.121 33.011 32.433  

 

Table 5:  Values of CSP and ED for Al0.3:(LiMn2O4)0.7 @5A/g and 1.4 V for GCD 

 First cycle  Second cycle  Third cycle  Fourth cycle  Fifth cycle  

ΔT  23.27 22.39 22.01 21.47 21.39 

ΔV 1.4 1.4 1.4 1.4 1.4 

CSP  83.107 79.961 78.607 76.678 76.392 

ED  11.311 10.883 10.699 11.436 10.397  

 

The capacitance retention is seen in Figures 6 and 7 for Al0.1:(LiMn2O4)0.9 and Al0.3:(LiMn2O4)0.7, having capacity 

retention of 96.41 % and 91.92 % after five cycles at 5 A/g, respectively. 
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Figure 5: Shows the galvanostatic charge discharge GCD pattern for 

Al0.1:(LiMn2O4)0.9 composites @ 5A/g 

 
Figure 6: Shows the galvanostatic charge discharge GCD pattern for sample 

Al0.3:(LiMn2O4)0.7 composites @ 5 A/g 

 

 
Figure 7: Capacity retention for Al0.1:(LiMn2O4)0.9 composites @5 A/g 
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Figure 8: Capacity retention for Al0.3:(LiMn2O4)0.7 composites @5 A/g 

 

EIS Characterisation 

In finding out more about the electrochemical 

properties of the composite anode electrode, EIS 

measurement was carried out in the frequency range of 

100,000 to 0.1 Hz from which the equivalent series 

resistance (ERS) were estimated. This is seen in 

Figures 9 and 10. 

 
Figure 9: Electrochemical Impedance Spectroscopy Analysis Showing the 

Nyquist Plot for Al0.1:(LiMn2O4)0.9 

 
Figure 10: Electrochemical Impedance Spectroscopy Analysis Showing the 

Nyquist Plot for Al0.3:(LiMn2O4)0.7 

 

CONCLUSION 

Al3+ was added to the LiMn2O4 network to enhance 

charge transfer and ion transport kinetics throughout 

the composite electrodes. Through the intercalation of 

cations within the composite material's network, the 

electrode materials exploited the synergistic advantage. 

The anodes' material exhibits a reversible capacity 

loss, which can be primarily linked to reverse reactions 

within the solid electrolyte interface formation, 

aluminium adsorption, and the electrolyte's 

electrochemical breakdown. The charge that is retained 

in the anode material during charging shows a linear 

decline in charge capacity as the charging current 

intensity increases. The observed decrease in charge 
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and discharge capabilities at the current density of 5 

A/g can be explained by ionic polarisation. With a 

greater specific capacitance and energy density, the 

composite Al0.1:(LiMn2O4)0.9 is a better anode material 

for electrochemical applications compared to 

Al0.3:(LiMn2O4)0.7. The comparatively higher power 

density of Al0.1:(LiMn2O4)0.9 composite at a scan rate 

of 5 mV/s is mostly explained by its lower equivalent 

series resistance. 
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