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ABSTRACT 

Living systems are composed of molecules and atoms that can exhibit specific 

quantum effects, including coherent electric vibration, and vibrating systems that 

undergo resonance. Due to their resonance, biological materials can transfer energy 

when they vibrate at a specific frequency. In this paper, we establish the occurrence 

of vibrational resonance in a biophysical system modeling activated enzyme 

molecules in the brain waves. The VR was characterised using the response 

amplitude, Q which was numerically calculated using the Fourier coefficient of the 

output signal. The external high-frequency signal affected the enzyme-substrate 

reaction and amplified the combination process observed at resonance. Importantly, 

double resonances were induced by the strength of the decay rate. Resonance, 

induced by the strength of the decay rate and the external high-frequency signal 

would lead to significant brain wave activity related to inherent energy transfers 

from changes to the decay rate, and enzyme-substrate combination, and could be 

observed from the Electroencephalogram. 

INTRODUCTION 

The origin of the cosmos is energy, a form formed from 

nothingness whose principle of activity is manifested 

via change under the control of entropy. Matter is an 

asymmetric kind of light that can interact and absorb 

energy, molding and creating things like living cells. A 

symmetric energy state is necessary for the grouping of 

fundamental particles that make up a live cell. The key 

to comprehending the concept of consciousness lies in 

the extremely conserved energy found in 

electromagnetic radiation. When these natural forces 

cause highly ordered things to vibrate at their inherent 

frequency or at frequencies that occur naturally, 

resonating frequencies are created. Due to their 

resonance, bodies and cells can transfer energy between 

domains, resulting in a continuous state of interference 

and interaction that maintains the connectivity of the 

whole universe (Pereira, 2015). 

Newton’s laws of motion serve as the foundation for the 

mathematical explanation of physical systems’ motion. 

In explaining the dynamics of physical systems within 

classical boundaries, Newton's equations of motion 

emphasize the relationship underlying every force 

acting on a body and the resulting motion. When 

representing continuous changes in a variety of physical 

properties during motion, the differential equation (DE) 

has shown to be a helpful tool. DE simulates real-world 

deterministic and stochastic processes seen in 

engineering, biology, and the physical sciences. A linear 

differential equation is a reasonable approximation of a 

nonlinear system in the premise of any dynamic or static 

solution that is tenable to an appropriate perturbation 

process (Roy-Layinde et al., 2020). It explains 

sufficiently modest oscillations in a smooth dynamical 

system. Since the oscillations in most real-world 

systems are neither smooth nor tiny, nonlinear 

differential equations are a better fit for modeling these 

systems. 

Resonance is the term used to describe the improved 

response of a system when the frequency of an external 

driving force coincides with its natural frequency.  The 

Enhancement of a low-frequency (LF) nonlinear system 

to give a maximum response, brought about by an 

external stimulus is characterised as nonlinear 

resonances. Based on the sort of external force acting on 

the system, the enhancement produces many types of 

resonance: coherence resonance, vibrational resonance, 

ghost resonance, chaotic resonance, autoresonance, and 
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stochastic resonance (Rajasekar and Sanjuan, 2016). 

Vibrational resonance (VR) is produced when a high-

frequency (HF) periodic signal is substituted for noise 

(Roy-Layinde et al., 2024). VR is helpful in the 

identification of weak signals and the dampening of 

undesired signals in systems (Vincent et al., 2021; Yang 

et al., 2024). 

Research on vibrational resonance in systems with 

monostable (Jeyakumari et al., 2009b), bistable 

(Gitterman, 2001; Chizhevsky and Giacomelli, 2006; 

Yao and Zhan, 2010) and multistable potentials (Yang 

and Liu, 2010; Rajasekar et al., 2011; Chizhevsky, 

2014; Roy-Layinde et al., 2017; Vincent et al., 2018) 

has grown dramatically over the last 20 years. The VR 

phenomenon has been used to understand physical 

processes in mechanical oscillators  (Jeyakumari et al., 

2009a, 2011), information (Pan et al., 2021) and image 

processing (Morfu et al., 2021), plasma (Roy-Layinde et 

al., 2016), bubble (Omoteso et al., 2021), laser 

(Chizhevsky, 2021), neuron (Yu et al., 2011; Calim et 

al., 2021), gyroscope (Oyeleke et al., 2021; Sahoo and 

Chatterjee, 2021), quantum systems (Olusola et al., 

2020; Paul and Shankar Ray, 2021) and fractional-order 

systems (Qin et al., 2017; Yan et al., 2018).  

Since the introduction of the coherent oscillation in 

biophysical systems considered in this research through 

the case of an enzymatic substrate reaction with 

ferroelectric behavior in brain waves model, just few 

aspects of its dynamics have been employed. Based on 

this, this article intends to study VR in a biophysical 

system modelling activated enzyme molecules in brain 

wave. 

 

Model Description  

A second order non-autonomous differential equation 

representing activated enzyme molecules in brain waves 

serves as the biophysical model in this work. The model 

is based on long range coherence interactions which can 

initiate specific chemical reactions and transport 

processes in enzymes (Fro¨hlich, 1968). Kadji et al. 

(2007) considers the biological model as a combination 

of the enzyme-substrate reaction together with the 

ferroelectric behaviour with S substrate molecules with 

N and Z representing the population of excited enzymes 

and unexcited enzymes, respectively. The number of 

substrates S, the concentration Z of the remaining 

unexcited enzymes, and the rate of rise of the activated 

enzymes were considered to be proportionate to N, S, 

and Z, respectively, in the system of nonlinear 

differential equations. 
𝑑𝑁

𝑑τ
= ν𝑁𝑍𝑆 − ξ𝑁,   (1a) 

𝑑𝑆

𝑑τ
= γ𝑆 − ν𝑁𝑍𝑆,    (1b) 

𝑑𝑍

𝑑τ
= ξ𝑁 − ν𝑁𝑍𝑆 − λ(𝑍 − 𝐶),  (1c) 

where γ is the range of the attraction of the substrate 

particles initiated by spontaneous catalytic reactions, v 

is the nonlinear enzyme-substrate reaction strength and 

the rate at which excited enzymes decay to the ground 

(or weakly polar) state is ξ. The value of λ (Z − C) is 

derived from the long-range interaction, where C 

denotes the equilibrium amount of molecules of 

unexcited enzymes in the absence of both substrate and 

excited enzyme, or N = S = 0. A dimensionless 

biophysical system of the following form is obtained by 

taking into account the system's intrinsic resistance to 

ferroelectric tendency, potential external chemical 

fluctuations, or contributions to the electric field F from 

fluctuations in temperature and an externally applied 

field on the excited enzyme. For small values of excess 

amounts of activated enzymes ε and substrate η, the 

combined dielectric and chemical contribution results 

in:  

�̈� − μ(1 − 𝑥2 + α𝑥4 − β𝑥6)�̇� + 𝑥 = 𝑓 cos ω 𝑡,   (2) 

where the dots denote differentiation w.r.t time. α and β 

are positive coefficients of higher order nonlinearities in 

damping parameter, µ is the amplitude of damping 

coefficients, and while ω and 𝑓 denote the frequency 

and amplitude of the externally applied input signal 

respectively. 

It has been demonstrated that the biophysical system 

governed by Equation (2) displays a wide range of 

dynamical behavior, including chaotic, quasiperiodic, 

and periodic oscillations (Kaiser, 1981a,b; Kaiser and 

Eichwald, 1991; Kadji et al., 2007; Roy-Layinde et al., 

2020). 

To study VR, a fast periodic signal of the form 

𝑔 𝑐𝑜𝑠 ω 𝑡, is coupled with the weak external driving 

signal, so the biharmonically driven form of Equation 

(2) is given by  

�̈� − μ(1 − 𝑥2 + α𝑥4 − β𝑥6)�̇� + 𝑥 = 𝑓 cos ω 𝑡 +
𝑔 cos Ω 𝑡,     (3) 

Where Ω and 𝑔 are the frequency and amplitude of the 

high-frequency external periodic signal. 

 

MATERIALS AND METHOS 

First, we obtain the output signal by numerically solving 

Equation (3) using the Fourth-order Runge-Kutta 

(FORK) Scheme (FORK). The FORK algorithm is 

applied to a coupled first-order Ordinary Differential 

Equations (ODEs) which are obtained by first re-writing 

Equation (3) in the form: 
𝑑𝑥

𝑑𝑡
= 𝑦          (4a) 

𝑑𝑦

𝑑𝑡
= μ(1 − 𝑥2 + α𝑥4 − β𝑥6)�̇� − 𝑥 + 𝑓 cos ω 𝑡 +

𝑔 cos Ω 𝑡.    (4b) 

The response amplitude, or response factor Q, is 

commonly employed to describe resonance. It offers an 

understanding of the process by which an amplified 

output is produced by modulating the characteristics of 

a high-frequency signal connected to a nonlinear system 

that is weakly driven. Usually, the output signal's 
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Fourier spectrum is used to calculate the response 

amplitude. The reason for this is because the sum of the 

Fourier components of any periodic function may be 

used to roughly express it. Thus, the response amplitude 

Q may be expressed as form in terms of the Fourier sine 

Qs and cosine Qc components: 

Qs =
2

nT
∫ x(t) sin ω

nT

0
t dt    (5a) 

Qc =
2

nT
∫ x(t) cos ω

nT

0
t dt      (5b) 

so that Equation (5) may then be used to calculate the 

amplitude, A, and phase shift, Φ given as 

A = √Qs
2 + Qc

2          (6) 

Φ = tan−1 (
𝑄𝑠

𝑄𝑐
),          (7) 

so that, in order to calculate the response amplitude, Q, 

𝑄 =
𝐴

𝑓
=

√𝑄𝑠
2+𝑄𝑐

2

𝑓
.         (8) 

To generate the numerical results, Equation (4) was 

solved with zero initial conditions (𝑥(0) = 0, 𝑦(0) = 0) 

with integration step length of 0.005 and a total 

simulation time; Tsim = 500. The first 1000 initial 

iterates were discarded as transients. The response 

curves are generated while varying other system 

parameters to represent the variation of the response 

amplitude with respect to the high-frequency signal's 

amplitude.  

 

 
Figure 1: Resonant Curves (Response amplitude, Q versus HF amplitude, g) for 

different values of the low-frequency, ω = [ 0.15, 0.20, 0.25, 0.30, 0.40] 

 

 
Figure 2: Resonant Curves (Response amplitude Q versus HF amplitude, g) for different 

values of the damping coefficient, µ = [ 0.50, 1.00, 2.50, 4.00, 6.00]. the parameter- 

induced resonance showed significant difference in behaviour from the traditional 

vibrational resonance as can be observed in Figure 1 
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RESULTS AND DISCUSSION 

The occurrence of vibrational resonance was confirmed 

with response curves for the variation of response 

amplitude, Q with HF amplitude, g for different values 

of other system   parameters as shown in Figures 1 - 6. 

From the resonant curves, single peak resonances which 

are amenable to parameter modulation were observed. 

Parameter modulation of system phenomena is a 

necessary tool for control and prediction. 

Figure 1 shows the effects of low-frequency (LF) 

modulation on the observed single-peak resonance for 

the variation of response amplitude with HF g for five 

values of the LF ω = [0.15, 2.0, 2.5, 3.0, 4.0]. The 

system's response is amplified as the value of LF, ω 

rises, hence increasing the value of HF amplitude, g, at 

the highest resonance, gV R. As may be seen in Figures 

4.9 and 4.10, respectively, the maximum response 

amplitude, or Qma, increases as LF, ω, and damping 

coefficient, µ, rise. However, Figure 2 shows gV R 

reduces with increasing damping coefficient, µ. The role 

of nonlinear damping coefficient is consistent with 

established results of (Roy-Layinde et al., 2017), where 

nonlinear dissipation in form of frictional 

inhomogeneity was shown to cooperate with the 

parameters of the fast signal to control vibrational 

resonant state in a bi-harmonically driven 

inhomogeneous system defined by nonuniform spatial 

damping and a periodic potential. 

  

 
Figure 3: Resonant Curves (Response amplitude Q versus HF amplitude, g) for 

different values of the nonlinear damping parameter β = [0.050, 0.080, 0.100, 0.150, 

0.500] 

 

 
Figure 4: Resonant Curves (Response amplitude, Q versus HF amplitude, g) for 

different values of the system parameter, α = [ 0.45, 0.48, 0.50, 0.55, 0.60] 
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Next, we showed that the control of observed 

resonances earlier achieved through the damping 

coefficient as shown in Figure 2 can be achieved 

through the damping nonlinearities β and  α. This is 

shown Figure 3 and Figure 4 for the variation of 

response amplitude Q  with HF amplitude for different 

values of the nonlinearities β and α, respectively. Figure 

3 shows increase in β = [0.05, 0.08, 0.10, 0.15, 0.50] 

reduces both Qmax and gV R for the observed single-peak 

resonance curves. Hence increase in β leads to 

suppression and the maximum response occurs at lower 

value of HF amplitude. Figure 4 depicts the variation of 

response amplitude with respect to the HF amplitude g 

for five values of α = [0.45, 0.48, 0.50, 0.55, 0.60]. The 

resonance curves are shifted towards the left with higher 

Qmax occurring at lower gV R as α increases. It can be 

deduced that increasing α leads to enhancement at lower 

value of HF amplitude. Hence a combined modulation 

of both damping nonlinearities can also be used to 

control the basic features of observed single-peak 

resonances. 

The occurrence VR and control of observed resonance 

is shown in Figure 5 of the variation of the response 

amplitude Q with respect to the HF amplitude g   for 

different values of HF Ω = [40ω, 50ω, 60ω, 70ω, 80ω, 

90ω]. Evidently, the resonance peaks are enhanced by 

increasing the high-frequency. Also the peaks occur at 

higher values of HF amplitude gV R. However, only the 

maximum response Qmax can be controlled by varying 

the amplitude of the low-frequency signal f , gV R is not 

significantly changed as observed in Figure 6. 

 

 
Figure 5: Resonant Curves (Response amplitude, Q versus HF amplitude, g) for different 

values of the frequency of the HF signal, Ω = [ 40ω, 50ω, 60ω, 70ω, 80ω, 90ω] 

 

 
Figure 6: Resonant Curves (Response amplitude, Q versus HF amplitude, g) for different values 

of the amplitude of the LF signal, (a) f = [ 0.5, 0.6, 0.7, 0.8, 0.9], (b) f = [1.0, 2.0, 3.0, 4.0, 5.0] 

 
 



Analysis of Vibrational Resonance…  Olonade et al. NJP 

80 

         NIGERIAN JOURNAL OF PHYSICS   NJP VOLUME 33(3)                 njp.nipngn.ng 

Next, we discuss the possibility of initiating resonance 

through the cooperation of the HF signal parameters and 

the damping coefficient. Traditionally, VR is initiated 

by the parameters on the HF signal. However, it has 

been shown that other system parameters can induce 

resonance in the presence of the HF signal (Usama et 

al., 2019; Roy-Layinde et al., 2022). Figures 7 - 12 

show nonconventional resonances can be induced by the 

damping coefficient µ. The figures depict the response 

amplitude Q as a function of the damping coefficient µ 

for different values of other system parameters. 

The single peak resonance VR observed for the 

variation of HF amplitude g can also be induced from 

the variation of damping coefficient µ as shown in 

Figure 7 for different values of HF amplitude g, Figures 

8 and 9 for different nonlinearities β and α, respectively 

and in Figures 10 and 11 for different low-frequency 

parameters ω and f , respectively. For all cases within 

the parameter regime, the system displayed a resonance 

peak which is controllable by the values of an 

amendable system parameter while keeping other 

parameters constant. 

Figure 7 depicts the resonance curves induced by the 

variation of the damping coefficient for four values of 

the HF amplitude g = [90, 100, 120, 130]. Only single 

peak resonances were realized for all values of HF 

amplitude g chosen within the resonant regime. 

However, the HF amplitude increases the value of the 

damping coefficient at which the system response  is 

maximized. This implies the features of the 

unconventional resonance realised can be controlled by 

the HF signal parameter. Also, both nonlinear damping 

parameters β and α can be used to change Qmax and µV R. 

Figure 8 shows that Qmax is reduced with increasing 

nonlinearity β. In Figure 9, when β is constant, the ther 

damping nonlinearity shows significant enhancement 

when increased through α = [0.10, 0.30, 0.50, 0.80, 

1.00]. 

 

Figure 7: Resonant Curves (Response amplitude Q versus the parameter of the system, µ) 

for different values of the amplitude of the HF signal, g = [90, 100, 110, 120, 130] 
 

 
Figure 8: Resonant Curves (Response amplitude Q versus a parameter of the system, µ) for 

different values of the system parameter, β = [ 0.050, 0.055, 0.060, 0.070, 0.075] 
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The parameters of the LF signal, ω and f can also be 

used to control the observed damping-induced VR. 

Figure 10 shows the resonant curves for different low-

frequecy values ω = [0.20, 0.22, 0.24, 0.25, 0.26]. By 

increasing the low-frequecy, the system’s response is 

enhanced with obvious increment in the computed 

maximum response amplitude   Qmax and the of µ where 

resonance occur µVR. Also, similar level control can be 

achieved by changing the values of the LF amplitude f 

as shown in Figure 11 for five values of  f = [0.10, 0.30, 

0.50, 0.80, 1.00]. Figure 12 shows the possibility of 

enhancement of observed peaks from higher values of f . 

The damping-induced resonances are shown in Figure 

13(a) - (d) for four values of LF (a) ω = 0.15, (b) ω = 

0.20, (c) ω = 0.25, and (d) ω = 0.30. Single-peak 

resonance curve is observed in Figure 13(a). Increasing 

the LF enhances observed resonance as depicted by the 

clear increase in maximum response amplitude Qmax for 

increased ω as shown in Figure 13(a) -(d). Also, the 

value of the damping coefficient at which response is 

maximized is reduced with increased ω. Interestingly, 

increase in the LF also initiates other suppressed peaks 

as shown Figure 13(b)-(d). The observed suppressed 

peaks suggest the possibility of recovering multiple 

peaks if other parameters are modulated within its 

resonant regimes. This  is executed as depicted in Figure 

14 by varying the HF amplitude g within the regimes of 

Figure 13(b) to induce double-resonance. 

 

 
Figure 9: Resonant Curves (Response amplitude Q versus the parameter of the system, µ) for 

different values of the system’s parameter, α = [0.10, 0.30, 0.50, 0.80, 1.00] 

 

 
Figure 10: Resonant Curves (Response amplitude Q versus the parameter of the system, µ) 

for different values of the frequency of the LF signal, ω = [0.20, 0.22, 0.24, 0.25, 0.26] 
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Figure 11: Resonant Curves (Response amplitude Q versus the parameter of the system, 

µ) for different values of the amplitude of the LF signal, f = [0.10, 0.30, 0.50, 0.80, 1.00] 
 

Figure 14 shows that the damping coefficient can induce 

both single resonance (Figure 14(a)) and double 

resonance (Figure 14(d)) when the HF amplitude is 

varied. The enhancement and development of the 

suppressed peak into another peak for the emergence of 

double resonance is shown through Figure 14(a)-(d) for 

(a) g = 100, (b) g = 150, (c)    g = 170, and (d) g = 190. 

Considering the above, it is necessary to state that the 

damping coefficient has been shown to control VR (see 

Figure 3), induce resonance (see Figure 13) and 

importantly, cooperate with the HF amplitude to lead 

the system from single to double resonances as shown in 

Figure 14. 

The double resonances or bi-resonance has also been 

achieved from system parameters like the results 

produced herein in studies on integer-order systems 

(Jeyakumari et al., 2009a,b; Yang and Zhu, 2012), 

fractional-order systems (Calim et al., 2021), biological 

system (Fu et al., 2022) and systems with variable mass 

(Roy-Layinde et al., 2022). Variable mass parameters 

have an influence on the resonance characteristics in a 

VR research using a system with variable position-

dependent mass by causing the system to transition from 

single resonance to double resonance (Roy-Layinde et 

al., 2022). When systems are not driven 

deterministically, double vibrations can occur. Double 

stochastic resonance (DSR) is the term for the 

phenomena that has been reported to occur in systems 

driven by noise (Qiao et al., 2021). 

The nonlinearity can control the damping-induced 

resonance as shown in Figure 8 for the variation of the 

response amplitude Q with respect to the damping 

coefficient µ for different values of the nonlinearity β = 

[0.050, 0.055, 0.060, 0.070, 0.075]. The peak and value 

of damping coefficient at which resonance occur can be 

controlled by the nonlinear parameter β. Also, the the 

low-frequency signal amplitude f controls the response 

curve – Q vsµ, similarly shown in  Figure 12 to its role 

in controlling observed Q vs g resonances in Figure 6. 

 

 
Figure 12: Resonant Curves (Response amplitude Q versus a parameter of the system, µ) for 

different values of the amplitude of the LF signal, f = [ 1.0, 1.3, 1.5, 1.8, 2.0] 
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Figure 13: Resonant Curves (Response amplitude Q versus a parameter of the system, µ) for 

different values of the amplitude of the LF signal, (a) ω = 0.15, (b) ω = 0.20, (c) ω = 0.25, (d) ω = 

0.30 

 

 
Figure 14: Resonant Curves (Response amplitude Q versus a parameter of the system, µ) for 

different values of the amplitude of the HF signal, (a) g = 100, (b) g = 150, (c) g = 170, (d) g = 190 

 

CONCLUSION 

Vibrational resonance phenomenon was established in 

the biophysical system from numerical computation of 

response amplitude by qualitatively describing the 

response curves obtained from the computation of the 

response amplitude as a function of the high-frequency 

amplitude and the damping coefficient. The response 

curves computed from the response amplitudes 

exhibited a series of peaks denoting resonance as the 

frequency or the amplitude of the high-frequency input 

was varied. Single peak resonances which were 

amenable to variation of other system parameters were 

reported. The damping coefficient induced resonance 

single and double resonances in by cooperating with the 

parameters of the high-frequency input signal. The 

induced resonance could lead to significant brain wave 

activity related to inherent energy transfers from 

changes to the decay rate, and enzyme-substrate 

combination, and could be observed from the 

Electroencephalogram. 
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