

Nigerian Journal of Physics (NJP)

ISSN online: 3027-0936

ISSN print: 1595-0611

DOI: https://doi.org/10.62292/njp.v33(s).2024.258

Volume 33(S) 2024 Fractional Derivative Models for Energy Levels and Molar Entropy of Diatomic Molecules

*¹Ahmed, A. D., ¹Eyube, E. S., ²Mohammed, B. D., ³Ayuba, J. B. and ⁴Sabo, B.

¹Department of Physics, Faculty of Physical Sciences, Modibbo Adama University, P.M.B. 2076, Yola, Adamawa State, Nigeria.

²Department of Science Laboratory Technology, School of Science and Technology, Adamawa State Polytechnic, P.M.B. 2146, Yola, Adamawa State, Nigeria.

³Department of Science Laboratory Technology, Adamawa State College of Agriculture, Ganye, Nigeria ⁴Department of Physics, Aminu Saleh College of Education, Azare, Nigeria

*Corresponding author's email: <u>adahmed19@mau.edu.ng</u> Phone: +2348065326308

ABSTRACT

This study develops new analytical equations for the energy levels and molar entropy of substances by solving the Schrödinger equation with the Pöschl-Teller potential. While thermodynamics is crucial in fields like agriculture, drug design, and medical research, existing models often use spectroscopic constants but overlook fractional parameters, which limits their accuracy for gaseous diatomic molecules. By integrating fractional parameters alongside spectroscopic constants, this study addresses this limitation and improves precision. The new equations are applied to analyze pure substances, including Br₂ (X $^{1}\Sigma_{g}^{+}$), Cl₂ (X $^{1}\Sigma_{g}^{+}$), CO (X $^{1}\Sigma^{+}$), and Na₂ (X $^{1}\Sigma_{g}^{+}$). The mean percentage absolute deviation (MPAD) of the energy levels obtained is 1.4797%, 0.9043%, 0.0898%, and 1.1352%, respectively, **Keywords:** compared to Rydberg-Klein-Rees data. For molar entropy, the MPAD values are 0.1381%, 0.1360%, 0.1322%, and 0.6437% relative to data from the National Diatomic molecules, Fractional parameters, Institute of Standards and Technology (NIST) database. These results indicate a Thermodynamic functions, significant improvement in accuracy over existing models and are consistent with Energy eigenvalues. the literature on gaseous molecules.

INTRODUCTION

Thermodynamics is a highly useful field in the physical sciences that has significantly influenced human livelihood. Studies in thermodynamics have been crucial for investigating the growth reactions of economically important plants in agriculture (Popovic and Minceva, 2021). Thermodynamic measurements have played a pivotal role in the efficient design and manufacture of drugs in the chemical industry (Garbett and Chaires2012). Moreover, thermodynamic processes have been applied in medical research to diagnose, evaluate, and treat certain ailments such as cancer (Shamsabadipour et al.. 2023). Furthermore. thermodynamics has been instrumental in selecting phases during the non-equilibrium processing of materials.

Determining the thermal properties of real substances involves measuring various physical quantities, such as energy, entropy, heat capacity, and enthalpy. For example, William et al. experimentally determined the configurational entropy in a two-dimensional liquid subjected to random spinning (Williams et al., 2018). Given the high costs and complexity of these experimental setups, scientists have developed analytical models to analyze the thermal properties of substances. These models have proven essential in predicting the thermodynamic properties of various substances (Strekalov, 2024).

A key feature of these models is the type of diatomic molecule oscillator used to define the vibrational energy levels of the system. In a recent study, thermodynamic model equations derived from the shifted Morse potential have been essential for investigating the molar entropy, enthalpy, Gibbs free energy, and heat capacity of nitrogen and iodine dimers (Onate et al, 2024). Additionally, model equations based on the deformed Pöschl-Teller oscillator have been developed to predict the thermochemical properties of various substances. These equations have been applied to estimate the thermal properties of gaseous molecules such as P₂, N₂, and ICl (Eyube et al., 2022).

The improved Generalized Pöschl-Teller (IGPT) oscillator is widely recognized for its accuracy to replicating experimental potential energy data in numerous diatomic molecules. Its equation for energy levels has successfully contributed to formulating thermodynamic models for gaseous molecules. Rovibrational energy levels of diatomic molecules have been derived by solving the Schrödinger equation with and without electromagnetic potential coupling under the IGPT oscillator (Yanar et al., 2020). Analytical equations predicting Gibbs free energy and heat capacity of gaseous molecules have been obtained using the energy levels equation of the IGPT potential. These equations were applied to predict the thermal properties of ground state Br₂, Cl₂, and CO molecules (Eyube, Onate, Omugbe and Nwabueze 2022). The equation describing the internal motion of the IGPT oscillator is given as (Yanar et al., 2020)

$$U(\rho) = D_e \left\{ 1 + \frac{1 + \cosh^2(\alpha \rho_e) - 2\cosh(\alpha \rho_e)\cosh(\alpha \rho)}{\sinh^2(\alpha \rho)} \right\},$$

$$\alpha = \pi c \omega_e \left(\frac{2\mu}{D_e}\right)^{\frac{1}{2}}, \tag{1}$$

where D_e , ρ_e , and α are the equilibrium dissociation energy, bond length, and potential screening parameter, respectively. ω_e stands for the equilibrium harmonic vibrational frequency, *c* signifies the speed of light, ρ is the internuclear distance and μ indicates the reduced mass of a diatomic molecule.

Fractional calculus has gained significant attention from researchers in recent years, drawing interest across various scientific and technological disciplines. It involves differentiating and integrating non-integer orders, which differs from traditional integer-order calculus. Recent advancements in fractional calculus include various formulations and methodologies, such as the generalized fractional derivative approach discussed in recent literature (Abu-Shady, Khokha and Abdel-Karim, 2022). This method aids in deriving more precise expressions for bound-state energy levels in potential systems such as the improved Tietz potential (Abu-Shady, Khokha, 2022). The enhanced accuracy of these models stems from the incorporation of fractional parameters within the equations (Abu-Shady and Khokha, 2023).

Despite significant advancements in predicting the energy spectra of diatomic molecules, thermodynamic models often overlook fractional parameters. This omission can undermine the accuracy of predictions for thermal properties in gaseous molecules. To address this issue, our study develops new equations that incorporate fractional parameters for both energy levels and molar entropy of diatomic molecules, extending the IGPT potential model. This approach aims to enhance the precision and reliability of thermal property predictions, including those related to energy levels.

Fractional energy levels and molar entropy model of the IGPT potential

An overview of the GFNU method

The fractional derivative is a mathematical operation that involves differentiation of fractional orders, distinguishing it from the standard integer-order calculus operations. Fractional derivative finds application across various fields of science and technology. Different definitions of fractional calculus, such as those by Jumarie, Riemann-Liouville, Caputo, and the generalized fractional derivative (GFD) method have been formulated to suit different applications, particularly in physics (Abu-Shady, Fath-Allah, 2023). Based on the GFD approach, the derivative of a function $\psi(\tau)$ is given as

$$\Delta\psi(\tau) = \lim_{q \to 0} \frac{\psi(\tau + q\tau^{1-p}) - \psi(\tau)}{q},$$
(2)

where $q = \frac{1}{\Gamma(Q-p+1)}$, Δ is a generalized fractional differential operator. *p* and *Q* are fractional parameters satisfying $0 , <math>Q \in R^+$, and $\Gamma(x)$ denotes the standard gamma function evaluated at *x*. The operator Δ has the property that

$$\begin{aligned} \Delta^{p}\{\psi(\tau)\} &= q\tau^{1-p}\psi'(\tau) \\ \Delta^{p}\{\Delta^{p}\psi(\tau)\} &= q^{2}\{\tau^{1-p}\psi''(\tau) + (1-p)\tau^{1-2p}\psi'(\tau)\}. \end{aligned}$$
(3)

Recently, the parametric GFNU was introduced to solve Schrödinger and other wave equations. By suitably transforming the Schrödinger equation to the form (Abu-Shady, Fath-Allah, 2023)

$$\Delta^{p} [\Delta^{p} u_{npq}(s)] + \frac{\alpha_{1} - \alpha_{2}s}{s(1 - \alpha_{3}s)} \Delta^{p} u_{npq}(s) + \frac{-\xi_{1}s^{2p} + \xi_{2}s^{p} - \xi_{3}}{s^{2p}(1 - \alpha_{3}s)} u_{npq}(s) = 0, \qquad (4)$$

in which $u_{npq}(s)$ is the wave function *n* denotes the vibrational quantum number n = 0, 1, 2, ... The condition leading to bound state solutions is given as (Abu-Shady, Fath-Allah, 2023)

$$n^{2}\alpha_{3}p^{2}q^{2} + n(\alpha_{2} - \alpha_{3}pq)pq - (2n+1)\alpha_{5}pq + (2n+1)(\sqrt{\alpha_{9}} + \alpha_{3}\sqrt{\alpha_{8}})pq + \alpha_{7} + 2\alpha_{3}\alpha_{8} + 2\sqrt{\alpha_{8}\alpha_{9}} = 0,$$
(5)

where

$$\begin{aligned}
\alpha_4 &= \frac{1}{2}(pq - \alpha_1), \quad \alpha_5 &= \frac{1}{2}(\alpha_2 - 2\alpha_3 pq) \\
\alpha_6 &= \alpha_5^2 + \xi_1, \quad \alpha_7 &= 2\alpha_4 \alpha_5 - \xi_2, \alpha_8 &= \alpha_4^2 + \xi_3 \\
\alpha_9 &= \alpha_3 \alpha_7 + \alpha_3^2 \alpha_8 + \alpha_6.
\end{aligned}$$
(6)

Equations (4) and (5) provide the framework for developing the expression for the energy spectrum and consequently the generalized internal partition function for gaseous molecules.

NJP VOLUME 33(S)

Ro-vibrational energy states of the IGPT oscillator

The radial Schrödinger equation for the IGPT potential is written as

$$u_{npQ}''(\rho) + \frac{2M}{\hbar^2} \Big\{ E_{npQ} - D_e - \frac{U_1 - U_2 \cosh(\alpha \rho)}{\sinh^2(\alpha \rho)} \Big\} u_{npQ}(\rho) = 0,$$
(7)

here, *M* and \hbar represent the reduced mass and reduced Planck constant, respectively. Equation (7) is transformed into a hypergeometric equation using the substitution $s = \tanh^2 (\frac{1}{2}\alpha\rho)$ to obtain

$$u_{npQ}''(s) + \frac{\frac{1}{2}(1-3s)}{s(1-s)}u_{npQ}'(s) + \frac{-\varepsilon_1 s^2 + \varepsilon_2 s - \varepsilon_3}{s^2(1-s)^2}u_{npQ}(s) = 0.$$
(8)

where

$$\varepsilon_{1} = \frac{2MD_{e}\cosh^{4}\left(\frac{1}{2}\alpha\rho_{e}\right)}{\alpha^{2}\hbar^{2}}, \quad \varepsilon_{2} = \frac{2M}{\alpha^{2}\hbar^{2}} \left[E_{npQ} + \frac{1}{2}D_{e}\sinh^{2}\left(\alpha\rho_{e}\right) \right], \quad \varepsilon_{3} = \frac{2MD_{e}\sinh^{4}\left(\frac{1}{2}\alpha\rho_{e}\right)}{\alpha^{2}\hbar^{2}}. \tag{9}$$

Equation (8) can typically be solved using standard methods for hypergeometric differential equations. However, a more precise determination of energy eigenvalues can be achieved using a fractional calculus approach. The equivalent GFD form of this equation is obtained by replacing integer orders with fractional parameters (Abu-Shady, Fath-Allah, 2023), resulting in

$$\Delta^{p} [\Delta^{p} u_{npQ}(s)] + \frac{\frac{1}{2}(1-3s^{p})}{s^{p}(1-s^{p})} \Delta^{p} u_{npQ}(s) + \frac{-\epsilon_{1}s^{2p} + \epsilon_{2}s^{p} - \epsilon_{3}}{s^{2p}(1-s^{p})^{2}} u_{npQ}(s) = 0.$$
(10)

Equations (10) and (4) are the same if $\alpha_1 = \frac{1}{2}$, $\alpha_2 = \frac{3}{2}$, $\alpha_3 = 1$, $\zeta_1 = \varepsilon_1$, $\zeta_2 = \varepsilon_2$, $\zeta_3 = \varepsilon_3$. These values substituted into (6) gives $\alpha_4 = \frac{1}{2}pq - \frac{1}{4}$, $\alpha_5 = -pq + \frac{3}{4}$, $\alpha_6 = \left(pq - \frac{3}{4}\right)^2 + \varepsilon_1$, $\alpha_7 = -\left(pq - \frac{1}{2}\right)\left(pq - \frac{3}{4}\right) - \varepsilon_2$, $\alpha_8 = \frac{1}{4}\left(pq - \frac{1}{2}\right)^2 + \varepsilon_3$, and $\alpha_9 = \frac{1}{4}(pq - 1)^2 + \varepsilon_1 - \varepsilon_2 + \varepsilon_3$. Using these results in (5), we derive

$$\varepsilon_{2} = \varepsilon_{1} + \varepsilon_{3} + \frac{1}{4}(pq-1)^{2} - p^{2}q^{2} \times \left\{ n + \frac{1}{2} - \sqrt{\left(\frac{1}{2} - \frac{3}{4pq}\right)^{2} + \frac{\varepsilon_{1}}{p^{2}q^{2}}} + \sqrt{\left(\frac{1}{2} - \frac{1}{4pq}\right)^{2} + \frac{\varepsilon_{3}}{p^{2}q^{2}}} \right\}^{2}.$$
(11)

Combining equations (11) and (9), we have the fractional energy eigenvalue equation for the pure vibrational state of the IGPT oscillator as follows

$$E_{npQ} = D_e + \frac{\alpha^2 \hbar^2}{8M} (pq-1)^2 - \frac{\alpha^2 \hbar^2}{2M} p^2 q^2 \times \left\{ n + \frac{1}{2} - \sqrt{\left(\frac{1}{2} - \frac{3}{4pq}\right)^2 + \frac{2MD_e \cosh^4\left(\frac{1}{2}\alpha\rho_e\right)}{\alpha^2 \hbar^2 p^2 q^2}} + \sqrt{\left(\frac{1}{2} - \frac{1}{4pq}\right)^2 + \frac{2MD_e \sinh^4\left(\frac{1}{2}\alpha\rho_e\right)}{\alpha^2 \hbar^2 p^2 q^2}} \right\}^2.$$
(12)

The internal partition functions

The internal partition functions are crucial for deriving thermodynamic models applicable to gaseous molecules. At a temperature T, the internal partition

function of a diatomic system is expressed as $Z = Z_{vib}(T)Z_{rot}(T)Z_{tra}(T)$, where Z_{vib} , Z_{rot} , and Z_{tra} denote the vibrational, rotational, and translational partition functions, respectively. The temperature dependence of Z_{vib} is detailed in (Ahmed, Eyube, Omugbe, Onate and Timtere, 2023)

$$Z_{\text{vib}} = \sum_{n=0}^{\sigma} e^{-\gamma E_{npq}} \lim_{n \to \infty} (13)$$

here, $\gamma^{-1} = k_{\text{B}}T$, where k_{B} is the Boltzmann coefficient,

and n_{max} represents the number of excited bonded states found by imposing the condition $\frac{\partial E_{npq}}{\partial n}\Big|_{\sigma} = 0$. Plugging equation (12) into this expression yields

$$\sigma = -\frac{1}{2} + \sqrt{\left(\frac{1}{2} - \frac{3}{4pq}\right)^2 + \frac{2MD_e \cosh^4\left(\frac{1}{2}\alpha\rho_e\right)}{\alpha^2\hbar^2p^2q^2}} - \sqrt{\left(\frac{1}{2} - \frac{1}{4pq}\right)^2 + \frac{2MD_e \sinh^4\left(\frac{1}{2}\alpha\rho_e\right)}{\alpha^2\hbar^2p^2q^2}}.$$
 (14)

Inserting equations (12) into (13), one obtains

$$Z_{\text{vib}} = e^{-\omega^2} \sum_{n=0}^{\sigma} e^{\kappa^2 \left(\frac{\alpha}{\sigma} - 1\right)} \quad \text{i.i.i.}, \quad (15)$$

where $\omega = \sqrt{\gamma \left\{ D_e + \frac{1}{8} \alpha^2 \hbar^2 M^{-1} (pq-1)^2 \right\}}, \quad \text{and} \quad \kappa =$

$$\alpha \hbar \sigma p q \sqrt{\frac{1}{2} \gamma M^{-1}}$$
. The exponential function in series (15)

precludes exact evaluation. However, the modified Poisson summation approach allows for deriving an approximate expression for the vibrational partition function Eyube, Onate, Omugbe and Nwabueze (2022) outlines this method as follows

$$\sum_{n=\sigma}^{n=\sigma} \xi(n) = \frac{1}{2} \{\xi(0) - \xi(\sigma+1)\} + \int_0^{\sigma+1} \xi(x) dx, \quad (16)$$

Using expression (16) to evaluate summation, equation (15) is rewritten as

$$Z_{\rm vib} = \frac{1}{2} e^{\kappa^2 - \omega^2} - \frac{1}{2} e^{\frac{\kappa^2}{\sigma^2} - \omega^2} + \frac{\sigma \sqrt{\pi}}{2\kappa} e^{-\omega^2} \left(\text{erfi}\kappa + \text{erfi}\frac{\kappa}{\sigma} \right),$$
(17)

where erfi x is the imaginary error function evaluated at x. In the framework of the rigid rotor approximation for a diatomic molecule, the rotational partition function Z_{rot} and the translational partition function Z_{tra} are expressed as (Ahmed, Eyube, Omugbe, Onate and Timtere, 2023).

$$Z_{\rm rot} = \frac{1}{\Omega} \left(\frac{1}{3} + \frac{\tau}{\gamma} + \frac{\gamma}{15\tau} + \frac{4\gamma^2}{315\tau^2} \right), \tag{18}$$
$$Z_{\rm tra} = \frac{1}{n} \left(\frac{M_0}{2-t^2} \right)^{\frac{3}{2}} \gamma^{-\frac{5}{2}}, \tag{19}$$

in this context, μ_0 represents the molar mass, *P* signifies the pressure, and $\tau = \frac{\hbar^2}{2\mu r_e^2}$. The parameter Ω distinguishes between homonuclear molecules ($\Omega = 2$) and heteronuclear molecules ($\Omega = 1$), reflecting their respective symmetry coefficients. The molar entropy is derived from the expression $S_{pQ} = R \left(ln Z - \gamma \frac{\partial}{\partial \gamma} ln Z \right)$, where R is the molar gas constant. This expression, in conjunction with equations (17), (18), and (19), is used to derive the fractional equation for the molar entropy of the IGPT oscillator, given by

NIGERIAN JOURNAL OF PHYSICS

Ahmed et al.

$$S_{pQ} = R \left\{ ln Z + \omega^{2} + \frac{5}{2} - \frac{(\kappa^{2} + \sigma)e^{\kappa^{2} - \omega^{2}} - (\frac{\kappa^{2}}{\sigma^{2}} - 1)e^{\frac{\kappa^{2}}{\sigma^{2}} - \omega^{2}} - \frac{\sigma\sqrt{\pi}^{\text{erfi}\kappa + \text{erfi}\frac{\kappa}{\sigma}}}{2\kappa e^{\omega^{2}} - \frac{\tau}{2} + \frac{\tau}{\gamma} - \frac{\kappa^{2}}{315\tau^{2}}}{\Omega Z_{\text{rot}}} \right\}. (20)$$

RESULTS AND DISCUSSION

Notably, when the fractional parameters are set to p = Q= 1, the parameter q also equals 1. Under these conditions, Equation (12) simplifies to

$$E_{n} = D_{e} - \frac{\alpha^{2}\hbar^{2}}{2M} \left\{ n + \frac{1}{2} - \sqrt{\frac{1}{16} + \frac{2MD_{e}\cosh^{4}(\frac{1}{2}\alpha\rho_{e})}{\alpha^{2}\hbar^{2}}} + \sqrt{\frac{1}{16} + \frac{2MD_{e}\sinh^{4}(\frac{1}{2}\alpha\rho_{e})}{\alpha^{2}\hbar^{2}}} \right\}^{2}.$$
 (21)

Equation (21) represents the pure vibrational state energy spectrum of the IGPT oscillator, as described in the works of Yanar et al. (2020). This indicates that Equation (12) provides the most general form for the pure vibrational energy spectrum of the IGPT potential. To assess the applicability of this energy level equation to real systems, four diatomic molecules are examined: Br₂ (X ${}^{1}\Sigma_{g}{}^{+}$), Cl₂ (X ${}^{1}\Sigma_{g}{}^{+}$), CO (X ${}^{1}\Sigma^{+}$) and Na₂ (X ${}^{1}\Sigma_{g}{}^{+}$). These molecules are selected due to their welldocumented spectroscopic constants, including equilibrium internuclear distance (ρ_{e}), dissociation energy (D_{e}), and vibrational frequency (ω_{e}). Experimental data for D_{e} , ρ_{e} , and ω_{e} are sourced from Refs. (Focsa et al., 2000; Hajigeorgiou, 2010). Computed values of the screening parameter α for these molecules are also provided in the table.

Using the data from Table 1, Equations (12) and (21) are employed to calculate the eigenenergies of the molecules with and without fractional parameters for various vibrational quantum numbers. Tables 2 and 3 compare these analytically generated energy eigenvalues with the observed energies of Br₂ (X $^{1}\Sigma_{g}^{+}$), Cl₂ (X $^{1}\Sigma_{g}^{+}$), CO (X $^{1}\Sigma^{+}$) and Na₂ (X $^{1}\Sigma_{g}^{+}$) molecules, as reported by the Rydberg-Klein-Rees (RKR) experimental method in Refs. (Kirschner and Watson, 1974; Kusch and Hessel, 1978; Coxon, 1980; Focsa et al., 2000).

Table 1: Spectroscopic constants and potential screening parameters for diatomic molecules evaluated in this research (Focsa et al., 2000; Hajigeorgiou, 2010)

Distamia malagula	Mologular state	S	a (Å-1)		
Diatomic molecule	Molecular state	$\omega_{\rm e}~({\rm cm}^{-1})$	D _e (cm ⁻¹)	ρ_{e} (Å)	$-\alpha(\mathbf{A})$
Br ₂	$X \sum_{g}^{+}$	325.314194	15894.546	2.2810213	1.9862
Cl ₂	$X^{1}\Sigma_{g}^{+}$	559.7507	20276.44	1.98720	2.0017
CO	X $^{1}\Sigma^{+}$	2169.8129	90670	1.12832320	2.2978
Na ₂	X $^{1}\Sigma_{g}^{+}$	159.10939	5988	3.078538	0.8489

Table 2: Comparative analysis of pure vibrational state energies (in cm⁻¹) relative to experimental RKR energies (in cm⁻¹) for diatomic molecules: PAD values as a percentage of RKR energies

	Br ₂ (X $^{1}\Sigma_{g}^{+}$) $p = 0.9800, Q = 0.4100$			<i>n</i> $\operatorname{Cl}_2(X^{1}\Sigma_g^{+}) p = 0.5000, Q = 0.4114$							
n	Eq. (21)	Eq. (12)	${}^{\mathrm{a}}E_{\mathrm{obs}}$	PAD ₁	PAD ₂		Eq. (21)	Eq. (12)	${}^{\mathrm{b}}E_{\mathrm{obs}}$	PAD ₁	PAD ₂
0	162.2410	166.8772	162.3803	0.0858	2.7694	0	278.910	283.647	279.165	0.0914	1.6056
1	484.2260	497.9890	485.5306	0.2687	2.5659	1	830.934	844.948	833.463	0.3034	1.3779
2	802.8820	825.5782	806.5050	0.4492	2.3649	2	1375.233	1398.256	1382.347	0.5146	1.1509
3	1118.2089	1149.6448	1125.2909	0.6293	2.1642	3	1911.805	1943.572	1925.801	0.7267	0.9228
4	1430.2067	1470.1888	1441.8750	0.8092	1.9637	4	2440.651	2480.897	2463.794	0.9393	0.6942
						5	2961.771	3010.230	2996.288	1.1520	0.4653
13	4088.3766	4196.5680	4189.6294	2.4167	0.1656	6	3475.165	3531.571	3523.230	1.3642	0.2367
14	4367.0833	4481.8860	4483.3568	2.5934	0.0328	7	3980.832	4044.920	4044.564	1.5757	0.0088
15	4642.4609	4763.6815	4774.7011	2.7696	0.2308	8	4478.773	4550.277	4560.230	1.7862	0.2183
16	4914.5094	5041.9543	5063.6415	2.9452	0.4283	9	4968.988	5047.642	5070.165	1.9955	0.4442
						10	5451.477	5537.015	5574.305	2.2035	0.6690
25	7213.1357	7387.8929	7552.0265	4.4874	2.1734	11	5926.239	6018.397	6072.591	2.4100	0.8924
26	7451.8930	7630.9398	7815.5635	4.6532	2.3623	12	6393.275	6491.786	6564.968	2.6153	1.1147
27	7687.3213	7870.4640	8076.3966	4.8174	2.5498	13	6852.585	6957.184	7051.387	2.8193	1.3359
28	7919.4205	8106.4657	8334.4900	4.9801	2.7359	14	7304.169	7414.590	7531.811	3.0224	1.5563
29	8148.1905	8338.9448	8589.8067	5.1412	2.9205	15	7748.026	7864.004	8006.214	3.2248	1.7762
	I	MPAD (%)		2.6586	1.4797		Ν	IPAD (%)		1.6715	0.9043

a: (Focsa et al., 2000); b: (Coxon, 1980)

Table 3: Comparative analysis of pure vi	ibrational state energie	s (in cm ⁻¹) relative to o	experimental RKR
energies (in cm ⁻¹) for diatomic molecules: P	PAD values as a percenta	age of RKR energies	

**	CO (X $^{1}\Sigma^{+}$) $p = 0.9000, Q = 0.7159$				Na ₂ (X $^{1}\Sigma_{g}^{+}$) $p = 0.5000, Q$				= 0.4310		
n	Eq. (21)	Eq. (12)	${}^{c}E_{ m obs}$	PAD ₁	PAD ₂	n	Eq. (21)	Eq. (12)	${}^{\mathrm{d}}E_{\mathrm{obs}}$	PAD ₁	PAD ₂
0	1081.6615	1081.0777	1081.7791	0.0109	0.0648	0	79.290	78.004	76.391	3.7956	2.1116
1	3225.5116	3223.7815	3225.0522	0.0142	0.0394	1	236.286	232.478	228.216	3.5361	1.8676
2	5343.3990	5340.5505	5341.8437	0.0291	0.0242	2	391.168	384.907	378.693	3.2941	1.6408
3	7435.3236	7431.3849	7432.2200	0.0418	0.0112	3	543.935	535.290	527.810	3.0552	1.4171
4	9501.2854	9496.2847	9496.2494	0.0530	0.0004	4	694.589	683.627	675.557	2.8173	1.1945
						5	843.129	829.918	821.924	2.5800	0.9727
15	30513.3230	30498.4938	30482.6901	0.1005	0.0518	6	989.555	974.164	966.898	2.3433	0.7515
16	32267.7316	32252.1776	32235.4197	0.1002	0.0520	7	1133.868	1116.365	1110.466	2.1074	0.5312
17	33996.1775	33979.9266	33964.8189	0.0923	0.0445	8	1276.066	1256.520	1252.614	1.8722	0.3118
18	35698.6606	35681.7410	35667.9725	0.0860	0.0386	9	1416.151	1394.629	1393.327	1.6381	0.0934
						10	1554.121	1530.692	1532.590	1.4049	0.1238
20	39025.7385	39007.5658	38998.8817	0.0689	0.0223	11	1689.978	1664.710	1670.385	1.1730	0.3397
21	40650.3333	40631.5762	40626.8057	0.0579	0.0117	12	1823.721	1796.682	1806.696	0.9423	0.5543
22	42248.9654	42229.6520	42229.8199	0.0453	0.0004	13	1955.350	1926.609	1941.503	0.7132	0.7671
23	43821.6346	43801.7930	43808.0060	0.0311	0.0142	14	2084.865	2054.490	2074.787	0.4857	0.9783
						15	2212.266	2180.325	2206.527	0.2601	1.1875
33	58120.3752	58096.7970	58240.4388	0.2062	0.2466	16	2337.553	2304.115	2336.702	0.0364	1.3946
34	59407.4541	59383.6567	59550.0742	0.2395	0.2795	17	2460.727	2425.859	2465.290	0.1851	1.5994
35	60668.5701	60644.5818	60835.5899	0.2745	0.3140	18	2581.786	2545.557	2592.266	0.4043	1.8018
36	61903.7235	61879.5721	62097.0060	0.3113	0.3502	19	2700.732	2663.210	2717.606	0.6209	2.0016
37	63112.9140	63088.6279	63334.3337	0.3496	0.3880	20	2817.564	2778.817	2841.283	0.8348	2.1985
		MPAD (%)		0.0992	0.0898		Μ	PAD (%)		1.6238	1.1352

c: (Kirschner and Watson, 1974); d: (Kusch and Hessel, 1978)

To validate the accuracy of the model equations, the Lippincott error rate standard is utilized. This standard calculates the percentage absolute deviation (PAD) of the calculated results from the observed data, assessing the effectiveness of the model equations. According to the Lippincott standard, a model is deemed satisfactory if the PAD does not exceed 1% of the experimental data; thus, a lower PAD value indicates a better model. The PAD is written as (Eyube et al., 2023)

$$PAD = 100 \left| \frac{A-B}{C} \right|_{n}, \tag{22}$$

where *A*, *B*, and *C* are parameters to be chosen, with $A = C = E_{obs}$ and $B = (E_n, E_{npQ})$ [front]. The percentage absolute deviations (PADs), denoted as PAD₁ for the model without fractional parameters and PAD₂ for the model with fractional parameters, are calculated for the molecules and listed in Tables 2 and 3.

The results clearly show that the PAD values computed using equations with fractional parameters are lower compared to those computed without fractional parameters. This suggests that incorporating fractional parameters into the energy spectrum model significantly enhances its accuracy. The mean percentage absolute deviation (MPAD = $\frac{1}{N_p} \sum_{j=1}^{N_p} PAD_j$) values, where N_p represents the number of RKR data points, are calculated to illustrate the impact of fractional parameters. For the Br₂ (X $^{1}\Sigma_{g}^{+}$), Cl₂ (X $^{1}\Sigma_{g}^{+}$), CO (X $^{1}\Sigma^{+}$) and Na₂ (X $^{1}\Sigma_{g}^{+}$) molecules, the MPAD values with fractional parameters deactivated are 2.6588%, 1.6715%, 0.0992%, and 1.6238%, respectively. In contrast, with fractional parameters enabled, the MPAD values improve to 1.4797%, 0.9043%, 0.0898%, and 1.1352%, respectively. These results demonstrate a significant improvement in model accuracy when fractional parameters are incorporated, particularly for the molecular energies considered.

Table 4 summarizes the MPAD values reported for various energy eigenvalue models found in the literature, including the IGPT potential, improved Tietz (ITI) potential, Morse (MOR) potential, modified hyperbolic-type (MHT) potential, improved Scarf (ISC) potential, and improved q-deformed Scarf (IQSC) potential (Yanar et al., 2020; Eyube et al., 2022, Eyube et al., 2021). This table illustrates that incorporating fractional parameters into the equations describing the energy levels of diatomic molecules results in more accurate predictions of energy eigenvalues.

En anon madal	with file the file of the file									
Energy model	$\mathbf{Br}_2(\mathbf{X}\ {}^1\!\!\sum_{\mathbf{g}^+})$	$Cl_2 (X \ ^1\Sigma g^+)$	$CO(X^{1}\Sigma^{+})$	Na ₂ (X $^{1}\Sigma_{g^{+}}$)						
IGPT	1.4797	0.9043	0.0898	1.1352						
Enorgy model		MPAD with	out fractional parameters							
Eller gy model	$Br_2(X^{1}\Sigma_{g^{+}})$	$Cl_2 (X ^{1}\Sigma_{g}^{+})$	CO (X ¹ ∑ ⁺)	Na ₂ (X $^{1}\Sigma_{g}^{+}$)						
IGPT	2.6588	1.6715	e0.0992, e0.0991	1.6238						
MHT			^f 0.1001							
ISC			^g 0.0991							
MOR			e0.0989							
ITI		^h 1.0638	e0.3983							
IQSC		^h 1.6845								

MPAD with fractional narameters

e: (Yanar et al., 2020); f:(Eyube et al., 2022); g: (Eyube et al., 2022); h: (Eyube et al., 2021)

The applicability of the molar entropy equation is validated by considering the scenario where fractional parameters are disabled. Under these conditions, Equation (20) is equivalent to Equation (16) from (Eyube et al., 2022), which provides the molar entropy formula for the IGPT potential without fractional parameters. This equivalence confirms that Equation (20) represents a general form of the molar entropy model for the IGPT potential.

A novel aspect of this research is the incorporation of fractional parameters into the molar entropy model.

Numerical data for the molar entropy (S and S_{pQ}) of Br₂ (X $^{1}\Sigma_{g}^{+}$), Cl₂ (X $^{1}\Sigma_{g}^{+}$), CO (X $^{1}\Sigma^{+}$) and Na₂ (X $^{1}\Sigma_{g}^{+}$) molecules are computed using Equation (20), where S denotes the entropy with fractional parameters disabled. The computations are performed at a pressure of 0.1 MPa and over a temperature range of 300 to 6000 K. These results are compared with experimental data from the National Institute of Standards and Technology (NIST, 2017) database, as summarized in Tables 5 and 6. Figures 1-4 present graphical plots of molar entropy versus temperature for these molecules.

Table 5: Comparative analysis of molar entropy (in J mol⁻¹K⁻¹) relative to experimental NIST data for diatomic molecules: PAD values as a percentage of NIST data

$\operatorname{Br}_2(\mathbf{X}^1 \Sigma_{\mathbf{g}^+}) p =$			p = 0.5600,	Q = 0.500	0		Cl ₂ (X $^{1}\Sigma_{g}^{+}$) $p = 0.5200, Q =$			Q = 0.500	= 0.5000	
-7 (K)	S	S_{pQ}	ⁱ Snist	PAD ₁	PAD ₂	-1 (K)	S	S_{pQ}	ⁱ Snist	PAD ₁	PAD ₂	
300	245.982	246.287	245.617	0.1484	0.2726	300	223.135	223.667	223.289	0.0687	0.1694	
350	251.543	251.859	251.207	0.1337	0.2597	350	228.524	229.088	228.586	0.0270	0.2198	
400	256.394	256.719	256.093	0.1174	0.2446	400	233.237	233.827	233.263	0.0111	0.2419	
450	260.696	261.029	260.431	0.1019	0.2296	450	237.427	238.039	237.446	0.0081	0.2496	
500	264.562	264.901	264.329	0.0883	0.2163	500	241.199	241.829	241.228	0.0119	0.2493	
1600	308.111	308.480	308.169	0.0190	0.1009	1600	284.078	284.825	284.504	0.1498	0.1130	
1700	310.424	310.794	310.497	0.0234	0.0957	1700	286.364	287.114	286.813	0.1566	0.1050	
1800	312.612	312.982	312.700	0.0283	0.0902	1800	288.524	289.277	288.995	0.1630	0.0975	
1900	314.686	315.057	314.792	0.0336	0.0842	1900	290.572	291.326	291.065	0.1695	0.0898	
2100	318.543	318.915	318.690	0.0460	0.0706	2100	294.374	295.132	294.911	0.1821	0.0750	
2200	320.345	320.716	320.515	0.0532	0.0628	2200	296.147	296.907	296.707	0.1887	0.0673	
2300	322.071	322.443	322.269	0.0614	0.0541	2300	297.845	298.606	298.429	0.1956	0.0594	
2400	323.730	324.102	323.957	0.0702	0.0448	2400	299.475	300.237	300.084	0.2029	0.0510	
5600	357.291	357.665	358.419	0.3147	0.2104	5600	332.877	333.649	334.258	0.4132	0.1821	
5700	357.970	358.344	359.098	0.3140	0.2099	5700	333.582	334.354	334.941	0.4059	0.1753	
5800	358.636	359.009	359.761	0.3128	0.2089	5800	334.273	335.045	335.608	0.3979	0.1677	
5900	359.287	359.661	360.410	0.3116	0.2079	5900	334.951	335.723	336.257	0.3884	0.1587	
6000	359.925	360.299	361.044	0.3100	0.2065	6000	335.616	336.389	336.891	0.3783	0.1490	
	MP	AD (%)		0.1652	0.1381		MP	AD (%)		0.2604	0.1360	
i: (NIS	T, 2017)											

iT (IZ)	iT (K) $CO(X^{1}\Sigma^{+}) p = 0.5000, Q = 0.4300$)		Na ₂ (X $^{1}\Sigma_{g}^{+}$) $p = 0.5030, Q = 0.4300$				
-7 (K)	S	\mathbf{S}_{pQ}	ⁱ Snist	PAD ₁	PAD ₂	-1 (K)	S	\mathbf{S}_{pQ}	ⁱ Snist	PAD ₁	PAD ₂
300	194.839	194.888	197.833	1.5133	1.4886	300	230.458	230.542	230.476	0.0076	0.0286
400	204.008	204.069	206.238	1.0812	1.0519	350	236.195	236.280	236.286	0.0384	0.0025
500	211.243	211.313	212.831	0.7462	0.7131	400	241.189	241.275	241.346	0.0651	0.0295
600	217.240	217.319	218.319	0.4940	0.4579	450	245.612	245.699	245.830	0.0888	0.0535
700	222.375	222.461	223.066	0.3099	0.2713	500	249.583	249.671	249.859	0.1103	0.0754
1800	255.107	255.236	254.912	0.0764	0.1270	1600	294.941	295.031	294.755	0.0631	0.0936
1900	257.042	257.173	256.859	0.0714	0.1223	1700	297.356	297.446	296.895	0.1554	0.1857
2000	258.884	259.017	258.714	0.0657	0.1170	1800	299.621	299.711	298.867	0.2522	0.2823
2100	260.640	260.775	260.486	0.0592	0.1108	1900	301.748	301.838	300.692	0.3511	0.3810
2300	263.927	264.065	263.808	0.0452	0.0972	2100	305.636	305.726	303.976	0.5461	0.5757
2400	265.470	265.609	265.369	0.0381	0.0903	2200	307.418	307.508	305.468	0.6383	0.6678
2500	266.953	267.093	266.871	0.0307	0.0831	2300	309.104	309.194	306.881	0.7243	0.7536
2600	268.380	268.521	268.318	0.0232	0.0757	2400	310.702	310.792	308.227	0.8029	0.8321
5600	296.747	296.903	297.184	0.1471	0.0945	5600	339.355	339.445	344.731	1.5596	1.5335
5700	297.410	297.566	297.862	0.1518	0.0993	5700	339.905	339.995	345.655	1.6635	1.6375
5800	298.062	298.218	298.528	0.1562	0.1037	5800	340.445	340.534	346.554	1.7629	1.7370
5900	298.703	298.860	299.184	0.1608	0.1084	5900	340.974	341.064	347.428	1.8577	1.8319
6000	299.333	299.490	299.829	0.1653	0.1129	6000	341.493	341.583	348.275	1.9473	1.9215
MPAD ((%)			0.1413	0.1322	MPAD	(%)			0.6449	0.6437

Table 6: Comparative analysis of molar entropy (in J mol⁻¹K⁻¹) relative to experimental NIST data for diatomic molecules: PAD values as a percentage of NIST data

i: (NIST, 2017)

Figure 3: Plot of Molar Entropy Versus Temperature for The Ground State CO Molecule

Figure 4: Plot of Molar Entropy Versus Temperature for The Ground State Na2 Dimer

The close agreement between the calculated values and the NIST data confirms the accuracy and applicability of the molar entropy expression. Notably, incorporating fractional parameters enhances the precision of predictions. Analysis of PAD and MPAD values, detailed in Tables 5 and 6, shows that the MPAD values obtained with fractional parameters enabled yield the most accurate molar entropy predictions.

This research introduces a significant advancement by incorporating fractional parameters, improving upon previous models. For instance, Jia et al. (2018) utilizes the improved Tietz (ITI) potential for analyzing thermal properties, while Jia et al. (2019) employed the modified Rosen-Morse (MRM) potential. The findings in Table 7 demonstrate that the IGPT model with activated fractional parameters provides superior MPAD values compared to these existing models, highlighting the importance of fractional parameters in achieving more accurate entropy predictions.

Entrony model	MPAD with fractional parameters								
Entropy model	$Br_2(X^{1}\Sigma_{g^{+}})$	Cl ₂ (X $^{1}\Sigma g^{+}$)	CO (X $^{1}\Sigma^{+}$)	Na ₂ (X $^{1}\Sigma g^{+}$)					
IGPT	0.1381	0.1360	0.1322	0.6437					
		MPAD without frac	ctional parameters						
Entropy model	$Br_2(X^{1}\Sigma_{g^{+}})$	Cl ₂ (X $^{1}\Sigma g^{+}$)	CO (X ¹ ∑ ⁺)	Na ₂ (X $^{1}\Sigma_{g^{+}}$)					
IGPT	0.1652	0.2604	0.1413	0.6449					
ITI	0.5912	0.6364	0.1425	1.2507					
MRM	0.5717	0.7148	0.5355	0.7424					

 Table 7: Benchmarking of MPAD values (%) for molar entropy of diatomic molecules

CONCLUSION

In this study, the radial Schrödinger equation is solved using the IGPT potential. The generalized fractional Nikiforov-Uvarov (GFNU) technique is employed to derive explicit equation for pure vibrational energy eigenvalues. By introducing fractional parameters in addition to standard molecular constants, this approach significantly enhances the accuracy of the energy eigenvalues for diatomic molecules. The derived expression for eigen energies is used to construct the internal partition function, which facilitates the calculation of the molar entropy of the system. This methodology is applied to several diatomic molecules, including Br₂ (X $^{1}\Sigma_{g}^{+}$), Cl₂ (X $^{1}\Sigma_{g}^{+}$), CO (X $^{1}\Sigma^{+}$), and

Na₂ (X $^{1}\Sigma_{g}^{+}$). To assess the accuracy of the energy model, the MPAD of the predicted data relative to experimental data is computed. The MPAD values for these molecules are 1.4797%, 0.9043%, 0.0898%, and 1.1352% compared to the Rydberg-Klein-Rees data. For fractional molar entropy, the MPAD values are 0.1381%, 0.1360%, 0.1322%, and 0.6437% relative to the NIST data. The results demonstrate that incorporating fractional parameters into the model equations significantly improves accuracy, as indicated by the lower MPAD values compared to conventional models. This improvement is consistent with existing literature and confirms the dependability of the refined models. The improved accuracy of vibrational energy eigenvalues and molar entropy has prospective applications in several areas, including spectroscopy and molecular detection, chemical kinetics and reaction dynamics, computational chemistry and molecular modeling. and thermodynamics and statistical mechanics.

REFERENCES

Abu-Shady, M., and Khokha, E.M. (2023). A Precise Estimation for Vibrational Energies of Diatomic Molecules Using the Improved Rosen-Morse Potential. *Sci. Rep.* 13, 11578. <u>https://doi.org/10.1038/s41598-023-37888-2</u>

Abu-Shady, M., and Fath-Allah, H.M. (2023). The Parametric Generalized Fractional Nikiforov-Uvarov Method and Its Applications. *East Eur. J. Phys.* 3, 248. https://doi.org/10.26565/2312-4334-2023-3-22

Abu-Shady, M., Khokha, E.M., and Abdel-Karim, T.A. (2022) The Generalized Fractional NU Method For the diatomic molecules in the Deng-Fan model. *Eur. Phys. J. D.* 76, 159. <u>https://doi.org/10.1140/epjd/s10053-022-00480-w</u>

Abu-Shady, M., and Khokha, E.M. (2022). On the Prediction of Fractional Vibrational Energies for Diatomic Molecules with the Improved Tietz Potential. *Mol. Phys.* 120, e2140720. https://doi.org/10.1080/00268976.2022.2140720

Ahmed, A.D., Eyube, E.S., Omugbe, E., Onate, C.A., and Timtere, P. (2023). Bound-State Energy Spectrum and Thermochemical Functions of The Deformed Schiöberg Oscillator. *Sci. Rep.* 13, 20386. https://doi.org/10.1038/s41598-023-47235-0

Coxon, J. A. (1980). Revised Molecular Constants, RKR Potential, and Long-Range Analysis for the $B^{3}\Pi(0_{u}^{+})$ State of Cl₂, and Rotationally Dependent Franck-Condon Factors for Cl₂ ($BX^{1}\Sigma_{g}^{+}$). J. Mol. *Spectrosc.* 82, 264. <u>https://doi.org/10.1016/0022-</u> 2852(80)90116-2

Eyube, E.S., Notani, P.P., Nyam, G.G., Jabil, Y.Y., and Izam, M.M. (2023). Pure Vibrational State Energies and Statistical-Mechanical Models for the Reparameterized Scarf Potential. *Front. Phys.* 11, 978347. https://doi.org/10.3389/fphy.2023.978347

Eyube, E.S., Notani, P.P., and Dikko, A.B. (2022). Modeling of Diatomic Molecules with Modified Hyperbolical-Type Potential. *Eur. Phys. J. Plus*, 137, 329. <u>https://doi.org/10.1140/epip/s13360-022-02526-9</u>

Eyube, E.S., Notani, P.P., and Izam, M.M. (2022). Potential Parameters and Eigenspectral of Improved Scarf II Potential Energy Function for Diatomic Molecules. *Mol. Phys.* 120, e1979265. <u>https://doi.org/10.1080/00268976.2021.1979265</u>

Eyube, E.S., Bitrus, B.M., Samaila, H., and Notani, P.P. (2022). Model Entropy Equation for Gaseous Substances. *Int. J. Thermophys.* 43, 55. https://doi.org/10.1007/s10765-022-02980-8

Eyube, E.S., Notani, P.P., Samaila, H. (2022).Analytical Prediction of Enthalpy andGibbs FreeEnergy of Gaseous Molecules. Chem.Thermodyn.ThermalAnal.6,https://doi.org/10.1016/j.ctta.2022.100060100060.

Eyube, E.S., Onate, C.A., Omugbe, E., and Nwabueze, C.M. (2022). Theoretical Prediction of Gibbs Free Energy and Specific Heat Capacity of Gaseous Molecules. *Chem. Phys.* 560, 111572. https://doi.org/10.1016/j.chemphys.2022.111572

Eyube, E.S., Nyam, G.G., and Notani, P.P. (2021). Improved q-deformed Scarf II Potential. *Phys. Scr.* 96, 125017<u>https://doi.org/10.1088/1402-4896/ac2eff</u>

Focsa, C., Li, H., and Bernath, P. F. (2000). Characterization of the Ground State of Br₂ by Laser-Induced Fluorescence Fourier Transform Spectroscopy of the $B^{3}\Pi_{0+u}$ -X¹ Σ_{g}^{+} System. *J. Mol. Spectrosc.* 200, 104. <u>https://doi.org/10.1006/jmsp.1999.8039</u>

Garbett, N. C., and Chaires, J. B. (2012). Thermodynamic studies for drug design and screening. *Expert Opin. Drug Discov.* 7, 299. https://doi.org/10.1517/17460441.2012.666235

Hajigeorgiou, P. G. (2010). An Extended Lennard-Jones Potential Energy Function for Diatomic Molecules: Application to Ground Electronic States. *J. Mol.*

101.

Spectrosc. 263, <u>https://doi.org/10.1016/j.jms.2010.07.003</u>

Jia, C. S., Zhang, L. H., Peng, X. L., Luo, J. X., Zhao, Y. L., Liu, J. Y., Guoa, J.J., Dong, L., and Tang, L.D. (2019). Prediction of Entropy and Gibbs Free Energy for Nitrogen. *Chem. Eng. Sci.* 202, 70. https://doi.org/10.1016/j.ces.2019.03.033

Jia, C. S., Wang, C. W., Zhang, L. H., Peng, X. L., Tang, H. M., Liu, J. Y., Xiong, Y., and Zeng, R. (2018). Predictions of Entropy for Diatomic Molecules and Gaseous Substances. *Chem. Phys. Lett.* 692, 57. https://doi.org/10.1016/j.cplett.2017.12.013

Kirschner, S. M., and Watson, J. K. G. (1974). Second-Order Semiclassical Calculations for Diatomic Molecules. *J. Mol. Spectrosc.* 51, 321. https://doi.org/10.1016/0022-2852(74)90060-5

Kusch, P., and Hessel, M. M. (1978). An Analysis of the B ${}^{1}\Pi_{u}$ -X ${}^{1}\Sigma_{g}{}^{+}$ Band System of Na₂. J. Chem. Phys. 68 (1978) 2591. <u>http://dx.doi.org/10.1063/1.436117</u>

National Institute of Standards and Technology (NIST),NIST Chemistry WebBook, NIST Standard ReferenceDatabaseNumber69(2017).https://doi.org/10.18434/T42S31

Onate, C.A., Okon, I.B., Omugbe, E., Eyube, E.S., Al-Asbahi, B.A., Kumar, Y.A., Emeje, K.O., Aghemenloh, E., Obasuyi, A.R., Obaje, V.O., and Etchie, T.O. (2924).

Chem. Phys. 582, 112294. https://doi.org/10.1016/j.chemphys.2024.112294

Popovic, M., and Minceva, M. (2021). Standard Thermodynamic Properties, Biosynthesis Rates, and the Driving Force of Growth of Five Agricultural Plants. *Front. Plant Sci.* 12, 671868. <u>https://doi.org/10.3389/fpls.2021.671868</u>

Shamsabadipour, A., Pourmadadi, M., Davodabadi, F., Rahdar, A., and Ferreira, L.F.R. (2023). Applying Thermodynamics as An Applicable Approach to Cancer Diagnosis, Evaluation, and Therapy: A Review. *J. Drug Deliv. Technol.* 85, 104681. https://doi.org/10.1016/j.jddst.2023.104681

Strekalov M.L. (2024). The Heat Capacity of Triatomic Gases: An Analytical Approach. *Int. J. Thermophys.* 45, 25. <u>https://doi.org/10.1007/s10765-023-03315-x</u>

Williams, I., Turci, F., Hallett, J. E., Crowther, P., Cammarota, C., Biroli, G., and Royall, C. P. (2018). Experimental Determination of Configurational Entropy in A Two-Dimensional Liquid Under Random Pinning. *J. Phys. Condens. Matter* 30, 094003. https://doi.org/10.1088/1361-648X/aaa869

Yanar, H., Taş, A., Salti, M., and Aydogdu, O. (2020). Ro-Vibrational Energies of CO Molecule via Improved Generalized Pöschl–Teller Potential and Pekeris-Type Approximation. *Eur. Phys. J. Plus* 135, 292. https://doi.org/10.1140/epip/s13360-020-00297-9