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ABSTRACT 

This study delves into the intricate influence of crystal lattices on material 

properties, employing the Kronig and Penney potential model (KP) to understand 

wave functions and electronic band structures. Investigating classical and 

quantum mechanics, the research explores discrete atomic states through 

Schrödinger's equation, considering both finite and infinite potential scenarios. 

The results found that as (αa) increases, the energy within the +1 power scatter 

barrier experiences damping, reaching a constant defined by F(αa) = 6 × 〖10〗
^(-5)  (αa) + 0.9888. Electron confinement within the unit atom results in an 

infinite power scatter barrier, and energy (En) for any lattice is determined by E_n  

= 13.7 n^2. Temperature-induced variations signify increased energy, indicating 

free electron movement and a finite power scatter barrier. The electron's negligible 

velocity in the lattice plays a crucial role in determining amplitude. A decrease in 

ET corresponds to an increase in the velocity VT of the free electron. Extreme 

phonon energy in lattice structures is negligible due to its massless nature. The 

study notes increased energy in restricted electrons, causing a reduction in free 

electron energy due to an energy gap or barrier scatter. High temperatures are 

essential to reduce the energy band, facilitating electron transitions and resulting 

in an electron lifetime of 1.63 × 〖10〗^(-50)  s. These insights deepen our 

understanding of crystal lattice dynamics, offering avenues for innovative 

applications in materials science and quantum physics. 

 

INTRODUCTION 

The study of crystal lattice structures is fundamental to 

our understanding of the physical properties of materials. 

Crystal lattices are three-dimensional arrangements of 

atoms or ions, and they play a crucial role in determining 

the electrical, mechanical and optical properties of 

materials. The Kronig and Penney potential model (KP) 

is a mathematical framework used to describe wave 

function and the electronic band structure in crystalline 

solids. The wave is a set of rhythmic square waves that 

represents an idealized quantum-mechanical system 

(Salimen, 2020). Quantum mechanics is engaged in these 

phenomena to calculate them (Salimen, 2020). After 

taking a few steps, the restricted and permissible band 

gaps are finally discovered (Salimen, 2020). This 

proposal outlines a research project aimed at analyzing 

and exploring the Kronig and Penney potential model 

within crystal lattice structures to deepen our 

understanding of their impact on material properties. 

The KP model is drastically simplified one-dimensional 

crystallographic quantum mechanical model. Despite the 

model's simplifications, the electronic band structure it 

produces has many similarities to band structures that 

come from more complex well developed models (Kahl, 

2005). 

The primary objectives of this research project are as 

follows: To develop a theoretical framework to analyze 

the Kronig and Penney potential model within different 

crystal lattice structures. To utilize computational 

methods and software tools to perform simulations and 

calculations on specific crystal lattice structures. To 

compare the results obtained from theoretical analysis 

and computational simulations with experimental data 

were available to validate the accuracy of the Kronig and 

Nigerian Journal of Physics (NJP) 

ISSN online: 3027-0936 

ISSN print: 1595-0611 

DOI: https://doi.org/10.62292/njp.v34i2.2025.254  

Volume 34(2), June 2025 

 

mailto:imamphysics2024@gmail.com
https://doi.org/10.62292/njp.v34i2.2025.254


Analysis and Exploration of Kronig …  Rawagana et al. NJP 

148 

         NIGERIAN JOURNAL OF PHYSICS   NJP VOLUME 34(2)                 njp.nipngr.org 

Penney potential model in describing real-world crystal 

lattice structures. 

Crystal lattice structures are at the heart of our 

understanding of the physical properties of materials, 

playing a pivotal role in various scientific and industrial 

applications. To elucidate the behavior of electrons 

within these structures, the Kronig and Penney potential 

model has been widely employed. Despite the extensive 

use of the Kronig and Penney model, there may still be 

gaps in our understanding of its intricacies and nuances. 

Identifying and addressing these knowledge gaps is 

essential for refining the model's accuracy and utility. 

Resolving these issues and questions surrounding the 

Kronig and Penney potential model in crystal lattice 

structures holds significant scientific and practical 

importance. A comprehensive analysis of the model's 

accuracy, its variations, and its integration with 

experimental data will advance our understanding of 

materials and potentially open doors to designing new 

materials with tailored properties. This research can 

contribute to advancements in fields such as electronics, 

materials engineering, and energy storage, where crystal 

lattice structures play a central role. 

This study will focus primarily on the theoretical aspect 

of kronig and penny potential model in crystal lattice 

structures. It will encompass solid state physics, quantum 

mechanics and mathematical modeling. While the 

analysis will be theoretical in nature, it may include 

discussions of experimental results for comparative 

purposes. 

The Kronig-Penney model of a particle in a one-

dimensional lattice has been studied using bootstrap 

methods from conformal field theory. These methods 

efficiently compute the band gaps of the energy spectrum 

but have trouble effectively constraining the minimum 

energy. To address this issue, more complex constraints 

involving higher powers of momenta have been 

proposed. Additionally, an approach for analytically 

constructing the dispersion relation associated with the 

Bloch momentum of the system has been suggested 

(Blacker et al., 2022). The discontinuous potentials in the 

Kronig-Penney model have been shown to have unusual 

conclusions in the solutions of the associated 

Schrodinger equation, with classical analogs displaying 

the appearance of frequency bands instead of energy 

bands found in the quantum domain (Oseguera, 1992). 

The properties of electrons moving in two dimensions in 

a one-dimensional periodic magnetic field, which is the 

magnetic analog of the Kronig-Penney problem, have 

also been investigated (Ibrahim et al., 1995). 

 

MATERIALS AND METHODS 

Theoretical Frame Work 

Theoretical frameworks for the Kronig-Penny potential 

model within different crystal lattice structures have been 

developed and analyzed in scientific literature. One 

approach is to use an accurate analytical model that 

considers a crystal lattice with a stepwise change in 

potential (Colmankhaneh et al., 2021). This model has 

been extensively studied and analyzed, particularly for 

structures with a double-cell period.  

Another approach is to extend the Kronig-Penney model 

by introducing chiral (sub lattice) symmetry through 

variations in scattered separations or potential heights 

(Vytovtov et al., 2022). This extension allows for the 

existence of topological chiral symmetry protected edge 

states. The solution to these models can be obtained using 

the conventional scattering formalism used to study the 

Kronig-Penney model (Smith et al., 2020). Overall, these 

approaches provide theoretical frameworks for 

understanding the Kronig-Penny potential model within 

different crystal lattice structures. 

In classical mechanics it is possible to calculate, for 

example, the vibrational modes of a string, membrane or 

resonator by solving a wave equation, subject to certain 

boundary conditions. At the very beginning of the 

development of quantum mechanics, one was faced with 

the problem of finding a differential equation describing 

discrete states of an atom. It was not possible to deduce 

exactly such an equation from old and well-known 

physical principles; instead, one had to search for 

parallels, in classical mechanics and try to deduce the 

desired equation on the basis of plausible arguments. 

Such an equation, not derived but guessed at intuitively, 

would then be a postulate of the new theory, and its 

validity would have to be checked by experiment. This 

equation for the calculation of quantum-mechanical 

states is called the Schrodinger equation (Greiner, 2000). 

Insertion of this result into equation (1) yields the time-

dependent wave equation: 

𝜓(𝑥, 𝑡) = 𝜙(𝑥)𝑒−
𝑖�̂�𝑡

ℏ    (1) 

If �̂� is real then the wave function has an amplitude 𝜙(𝑥) 

and a phase 𝑒−
𝑖�̂�𝑡

ℏ . The amplitude and the phase 

representation is convenient for many applications. 

In theory, the Schrödinger’s equation allows us to solve 

any quantum mechanical system exactly. We simply 

insert the potential U(x) and solve for the wave function 

𝜓(𝑥, 𝑡) and energy �̂�. Unfortunately, there are only very 

few potentials such as the finite square well or coulomb 

potential of the hydrogen atom, for which simple and 

exact solution exists. In order to make any further 

progress, we need to incorporate some techniques for 

finding approximate solutions to the Schrödinger’s 

equation. A very important set of these techniques is 

called perturbation theory. 

In the most simplified version of the free electron gas, the 

true three-dimensional potential was ignored and 

approximated with a constant potential (see the quantum 

mechanics script as well) conveniently put at 0 eV. The 

true potential, however, e.g. for a Na crystal, is periodic 
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and looks more like this (including some electronic 

states): 

Semiconducting properties will not emerge without some 

consideration of the periodic potential – we therefore 

have to solve the Schrödinger equation for a suitable 

periodic potential. However, this is much easier said than 

done: There are several ways to do this (for real potentials 

always numerically), but they are all mathematically 

rather involved. 

Luckily, as stated before, it can be shown that all 

solutions must have certain general properties. These 

properties can be used to make calculations easier – as 

well as to obtain a general understanding of the effects of 

a periodic potential on the behavior of electron waves. 

The starting point is a potential V(r) determined by the 

crystal lattice that has the periodicity of the lattice, i.e. 

𝑉(𝑥)  =  𝑉(𝑥 +  𝑎)   (2) 

With a = any translation vector of the lattice under 

consideration. We then will obtain some wave-functions 

ψ(x) which are solutions of the Schrödinger equation for 

V(x). In addition, these wavefunctions have to fulfill the 

boundary conditions, since we are still dealing with a 

kind of "particle in a box" problem – the electrons are 

confined inside the crystal. 

Bloch used straight Fourier analysis and he found that the 

wave differed from the plane wave of free electrons only 

by a periodic modulation. This was so simple to him 

because he did not think it could be much of a discovery, 

but when he showed it to Heisenberg, he said right away; 

“That’s it!! (F. Bloch, July, 1928) (from the book edited 

by Hoddeson et al., 1928). 

His paper was published in 1928 [F. Bloch, Zeitschrift für 

Physik 52, 555 (1928)]. There are many standard 

textbooks which discuss the properties of the Bloch 

electrons in a periodic potential. 

We consider the motion of an electron in a periodic 

potential (the lattice constant a). The system is one-

dimensional and consists of N unit cells (the size L = Na, 

N: integer).  

φ(x + a) = exp(𝑖𝑘𝑎) φ(x)  (3) 

This is called as the Bloch theorem. The Bloch theorem 

in essence formulates a condition that all solutions ψ(r), 

for any periodic potential V(r) whatsoever, have to meet. 

In one version it ascertains 

𝜓(𝑟)  =  𝑢(𝑟)𝑒𝑖𝑘𝑟   (4) 

With k = any allowed wave vector for the electron that is 

obtained for a constant potential, and u(r) =some 

functions with the periodicity of the lattice, i.e. 

𝑢(𝑟 +  𝑇)  =  𝑢(𝑟)   (5) 

Any wave function meeting this requirement we will 

henceforth call a Bloch wave. As before, we choose 

periodic boundary conditions; this ensures that no 

restriction on the translation vectors T needs to be 

considered. The Bloch theorem is quite remarkable, 

because, as said before, it imposes very special 

conditions on any solution of the Schrödinger equation, 

no matter what the form of the periodic potential might 

be. We notice that, in contrast to the case of the constant 

potential, so far, k is just a wave vector in the plane wave 

part of the solution. Due to the periodic potential, 

however, its role as an index to the wave function is not 

the same as before – as we will shortly see. Bloch's 

theorem is a proven theorem with perfectly general 

validity. We will first give some ideas about the proof of 

this theorem and then discuss what it means for real 

crystals. As always with hindsight, Bloch's theorem can 

be proved in many ways; the links give some examples.  

Here we only look at general outlines of how to prove the 

theorem:  

It follows rather directly from applying group theory to 

crystals. In this case one looks at symmetry properties 

that are invariant under translation. It can easily be 

proved by working with operator algebra in the context 

of formal quantum theory Mathematics (see the quantum 

mechanics script again). It can be directly proved in 

simple ways – but then only for special cases or with not 

quite kosher "tricks". Bloch’s theorem was formulated by 

the Swiss – born U.S physicist “FLIX BLOCH” (1905 – 

1983) in 1928.  

A crystal lattice is the three-dimensional structural 

arrangement of atoms or molecules inside a crystalline 

solid. It consists of repeating unit cells in different 

directions (Qin et al., 2023). The properties of crystalline 

solids are determined by the arrangement of molecules in 

the lattice (Quan-Qin et al., 2023). Weakening the inter-

layer interaction is an effective strategy to introduce 

disorder between the layers of a crystalline material (Yun 

et al., 2023). The physio-chemical properties of a crystal 

lattice are highly reliant on the molecular structure of the 

network (Chaturvedi et al., 2020). The dissolution rates 

of a fused mixture and a physical mixture are expected to 

be the same based on solubility theory, but experimental 

results show non-ideal behavior. The crystal lattice 

energy in eutectics still limits solubility and dissolution 

rate. 

Computational methods and calculations can be utilized 

on specific crystal lattice structures in several ways. One 

approach is to use machine learning-based methods to 

automatically classify structures by crystal symmetry 

(Ziletti et al., 2017). This involves representing crystals 

by calculating a diffraction image and constructing a 

deep-learning neural-network model for classification. 

Another method is to use various techniques such as 

plane-wave methods, orthogonal zed plane waves, linear 

combination of atomic orbitals, and kronig Penney 

perturbation theory to calculate the band structure of 

solids (Fischetti et al., 2016). Additionally, 

intermolecular potentials can be used to calculate lattice 

frequencies and crystal structures, taking into account the 

effects of different potential terms (Righini, 1985). 

Furthermore, a phase-field crystal model can be 

employed to create complex three- and two-dimensional 
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crystal structures by energetically favoring specific inter 

planar angles (Alster et al, 2017). Finally, a solvent-

independent approach based on crystal lattice properties 

can be used to calibrate ion parameters for accurate 

simulations of aqueous systems (Hmao et al., 2012). 

Software tools are available to perform simulations and 

calculations on specific crystal lattice structures. These 

tools enable researchers to investigate the quality of force 

fields, correlate simulated ensembles to experimental 

structure factors, and extrapolate behavior in lattices to 

behavior in solution (Cerutti et al., 2019). Modern high-

level programming languages allow for the development 

of internal domain-specific languages (DSL) for lattice-

based operations in simulation models (Hawick, 2012).  

Crystallographers can use professional software for 

structure refinement, but non crystallographers may not 

have access to it. However, a simple method has been 

proposed to study the sensitivity of crystal lattice energy 

to changes in structural parameters, providing a 

diagnostic tool to test the quality of crystal structure files 

(Jinjin li et al., 2014). Additionally, a new method has 

been developed to calculate the free energy difference 

between two crystalline structures, particularly 

advantageous for highly harmonic systems (Ackland et 

al., 1997). These software tools and methods enhance the 

study of crystal structures and their properties in various 

scientific fields (Righini et al., 1985). 

The Schrödinger’s Equation, Bloch theorem, matrix and 

Hyperbolic functions. The researcher used rectangular 

square wells and berries with periodicity (a-b) to explain 

the behavior of an electron in 1-D periodic potential. The 

possible states that the electron can occupy are 

determined by the Schrödinger equation. In this case, the 

potential V is in the form of array of rectangular square 

wells and berries with periodicity (a-b). 

  
 𝑑2𝜑

𝑑𝑥2 +
8𝜋2𝑚

ℎ2 𝐸𝜑 = 0    (6) 

and 
𝑑2𝜑

𝑑𝑥2 +
8𝜋2𝑚

ℎ2 (𝐸 − 𝑉)𝜑 = 0   (7) 

Making use of Bloch’s theorem, the solution can be 

written in the form of 

𝜑𝑥 = 𝑢𝑘(𝑥)𝑒−𝑖𝑘𝑥    (8) 

Assuming that the total energy E of the electron is less 

than the potential energy V(x), we define two real 

quantities 𝛼 and 𝛽 such that 

𝛼2 =
8𝜋2𝑚

ℎ2 𝐸    (9) 

And 

𝛽2 =
8𝜋2𝑚

ℎ2 (𝑉0 − 𝐸)   (10) 

Thus, 
𝑑2𝜑

𝑑𝑥2 + 𝛼2𝜑 = 0    (11) 

and 
𝑑2𝜑

𝑑𝑥2 − 𝛽2𝜑 = 0    (12) 

The solution that will be appropriate for both the regions 

suggested by Bloch is the form 

𝜑𝑥 = 𝑢𝑘(𝑥)𝑒−𝑖𝑘𝑥    (13) 

On differentiating the equation (13), one get 
𝑑𝜑

𝑑𝑥
=

𝑑𝑢𝑘

𝑑𝑥
𝑒−𝑖𝑘𝑥 + 𝑢𝑘  𝑖𝑘𝑒−𝑖𝑘𝑥  (14) 

𝑑2𝜑

𝑑𝑥2 = (
𝑑2𝑢𝑘

𝑑𝑥2 +
𝑑𝑢𝑘

𝑑𝑥
2𝑖𝑘 − 𝑘2𝑢𝑘}) 𝑒−𝑖𝑘𝑥 (15) 

Substituting equation (15) into equation (11) and (12), we 

get 
𝑑2𝑢1

𝑑𝑥2 +
𝑑𝑢1

𝑑𝑥
2𝑖𝑘 + (𝛼2 − 𝑘2)𝑢1 = 0  (16) 

and 
𝑑2𝑢2

𝑑𝑥2 +
𝑑𝑢2

𝑑𝑥
2𝑖𝑘 − (𝛽2 + 𝑘2)𝑢2 = 0  (17) 

Where 𝑢1 represents the value of 𝑢𝑘(x) in the interval 

o<x<a and 𝑢2 the value of 𝑢𝑘(x) in the interval –b<x<o. 

The solution of the differential equation (16) is of the 

form: 

𝑢1 = 𝑒𝑚𝑥    (18) 
𝑑𝑢1

𝑑𝑥
= 𝑚𝑒𝑚𝑥    (19) 

𝑑2𝑢1

𝑑𝑥2 = 𝑚2𝑒𝑚𝑥     (20) 

Substituting equations (18), (19) and (20) into equation 

(16), we get 

𝑚2𝑒𝑚𝑥 + 2𝑖𝑘𝑚𝑒𝑚𝑥 + (𝛼2 − 𝑘2)𝑒𝑚𝑥 = 0 (21) 

This implies that, 

 𝑚2 + 2𝑖𝑘𝑚 + (𝛼2 − 𝑘2) = 0  (22) 

Therefore, 

 𝑚 =
−2𝑖𝑘±√4𝑘2−4(𝛼2−𝑘2)

2
= −𝑖𝑘 ± 𝑖𝛼 

𝑚1 = 𝑖(𝛼 − 𝑘)     (23a) 

𝑚2 = −𝑖(𝑘 + 𝛼)    (23b) 

Thus, the general solution is 

𝑢1 = 𝐴𝑒𝑚1𝑥 + 𝐵𝑒𝑚2𝑥   (24) 

By substituting equations 23a and 23b into equation 24, 

we get 

𝑢1 = 𝐴𝑒𝑖(𝛼−𝑘)𝑥 + 𝐵𝑒−𝑖(𝛼+𝑘)𝑥  (25) 

Where A and B are constants. Similarly equation (16) can 

written as: 

𝑚2𝑒𝑚𝑥 + 2𝑖𝑘𝑚𝑒𝑚𝑥 − (𝛽2 + 𝑘2)𝑒𝑚𝑥 = 0 (26) 

This implies that, 

 𝑚2 + 2𝑖𝑘𝑚 − (𝛽2 + 𝑘2) = 0  (27) 

Therefore, 

𝑚 =
−2𝑖𝑘±√4𝑘2+4(𝛽2+𝑘2)

2
= −𝑖𝑘 ± 𝛽  

𝑚1 = (𝛽 − 𝑖𝑘)     (28a) 

and 

𝑚2 = −(𝛽 + 𝑖𝑘)    (28b) 

Thus, the general solution is 

𝑢2 = 𝐶𝑒𝑚1𝑥 + 𝐷𝑒𝑚2𝑥   (29) 

By substituting equations (28a) and (28b) into equation 

(29), we get 

𝑢2 = 𝐶𝑒(𝛽−𝑖𝑘)𝑥 + 𝐵𝑒−(𝛽+𝑖𝑘)𝑥  (30) 

where C and D are constants. The values of the constants 

A, B, C and D can be obtained by applying the boundary 

conditions: 
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[𝑢1(𝑥)]𝑥=0 = [𝑢2(𝑥)]𝑥=0          (31a) 

[𝑢1
𝐼 (𝑥)]𝑥=0 = [𝑢2

𝐼 (𝑥)]𝑥=0          (31b) 

and   

[𝑢1(𝑥)]𝑥=𝑎 = [𝑢2(𝑥)]𝑥=−𝑏         (32a) 

[𝑢1
𝐼 (𝑥)]𝑥=𝑎 = [𝑢2

𝐼 (𝑥)]𝑥=−𝑏         (32b)  

By applying these conditions, we get 

[𝐴𝑖(𝛼 − 𝑘)𝑒𝑖(𝛼−𝑘)𝑥 − 𝐵𝑖(𝛼 + 𝑘)𝑒−𝑖(𝛼+𝑘)𝑥]𝑥=0  

= [𝐶(𝛽 − 𝑖𝑘)𝑒(𝛽−𝑖𝑘)𝑥 − 𝐷(𝛽 + 𝑖𝑘)𝑒−(𝛽+𝑖𝑘)𝑥]𝑥=0  

Therefore 

𝐴𝑖(𝛼 − 𝑘) − 𝐵𝑖(𝛼 + 𝑘) = 𝐶(𝛽 − 𝑖𝑘) − 𝐷(𝛽 + 𝑖𝑘)       (33) 

𝐴𝑒𝑖(𝛼−𝑘)𝑎 + 𝐵𝑒−𝑖(𝛼+𝑘)𝑎 = 𝐶𝑒−(𝛽−𝑖𝑘)𝑏 + 𝐷𝑒(𝛽+𝑖𝑘)𝑏       (34) 

[𝐴𝑖(𝛼 − 𝑘)𝑒𝑖(𝛼−𝑘)𝑥 − 𝐵𝑖(𝛼 + 𝑘)𝑒−𝑖(𝛼+𝑘)𝑥]𝑥=𝑎 = [𝐶(𝛽 − 𝑖𝑘)𝑒(𝛽−𝑖𝑘)𝑥 − 𝐷(𝛽 + 𝑖𝑘)𝑒−(𝛽+𝑖𝑘)𝑥]𝑥=−𝑏 

Therefore,  

𝐴𝑖(𝛼 − 𝑘)𝑒𝑖(𝛼−𝑘)𝑎 − 𝐵𝑖(𝛼 + 𝑘)𝑒−𝑖(𝛼+𝑘)𝑎 = 𝐶(𝛽 − 𝑖𝑘)𝑒−(𝛽−𝑖𝑘)𝑏 + 𝐷(𝛽 + 𝑖𝑘)𝑒(𝛽+𝑖𝑘)𝑏       (35) 

Equations (33), (34) and (35) will have non – vanishing solution if and only if the determinant of the coefficient A, B, 

C and D vanishes. 

This requires that: 

[

1 1 −1 −1
𝑖(𝛼 − 𝑘) −𝑖(𝛼 + 𝑘) (𝛽 − 𝑖𝑘) −(𝛽 + 𝑖𝑘)

𝑒𝑖(𝛼−𝑘)𝑎 𝑒−𝑖(𝛼+𝑘)𝑎 𝑒−(𝛽−𝑖𝑘)𝑏 𝑒(𝛽+𝑖𝑘)𝑏

𝑖(𝛼 − 𝑘)𝑒𝑖(𝛼−𝑘)𝑎 −𝑖(𝛼 + 𝑘)𝑒−𝑖(𝛼+𝑘)𝑎 (𝛽 − 𝑖𝑘)𝑒−(𝛽−𝑖𝑘)𝑏 −(𝛽 + 𝑖𝑘)𝑒(𝛽+𝑖𝑘)𝑏

] = 0   (36) 

This implies that, 

(2𝑖𝛼𝛽 − 2𝑘2)[𝑒𝑖(𝛼−𝑘)𝑎 − 𝑒−(𝛽−𝑖𝑘)𝑏][𝑒−𝑖(𝛼+𝑘)𝑎 − 𝑒(𝛽+𝑖𝑘)𝑏] + (−2𝑖𝛼𝛽 − 2𝑘2)[𝑒𝑖(𝛼−𝑘)𝑎 − 𝑒(𝛽+𝑖𝑘)𝑏][𝑒−(𝛽−𝑖𝑘)𝑏 −

𝑒−𝑖(𝛼+𝑘)𝑎] = (𝛼2 − 2𝑘2 − 𝛽2)[𝑒−𝑖(𝛼+𝑘)𝑎 − 𝑒𝑖(𝛼−𝑘)𝑎][𝑒(𝛽+𝑖𝑘)𝑏 − 𝑒−(𝛽−𝑖𝑘)𝑏]     (37) 

The R.H.S of equation (36) can be expands as  

= (𝛼2 − 2𝑘2 − 𝛽2)[𝑒−𝑖(𝛼+𝑘)𝑎𝑒𝛽𝑏𝑒𝑖𝑘𝑏 + 𝑒−𝑖(𝑘−𝛼)𝑎𝑒−𝛽𝑏𝑒−𝑖𝑘𝑏 − 𝑒−𝑖(𝛼+𝑘)𝑎𝑒−𝛽𝑏𝑒𝑖𝑘𝑏 − 𝑒𝑖𝑘(𝑏−𝑎)𝑒𝛽𝑏𝑒𝑖𝛼𝑎]  

The L.H.S of equation (36) can be expands as  

= (2𝑖𝛽𝛼 − 2𝑘2)[𝑒𝑖(𝛼−𝑘)𝑎−𝑖(𝛼+𝑘)𝑎 − 𝑒−(𝛽+𝑘)𝑎−𝑖(𝛼+𝑘)𝑎 + 𝑒−(𝛽−𝑖𝑘)𝑏+(𝛽+𝑖𝑘)𝑏 − 𝑒𝑖(𝛼+𝑘)𝑎+(𝛽+𝑖𝑘)𝑏] +

(−2𝑖𝛼𝛽 − 2𝑘2)[𝑒−(𝛽−𝑖𝑘)𝑏+𝑖(𝛼−𝑘)𝑎 + 𝑒−𝑖(𝛼+𝑘)𝑎+(𝛽+𝑖𝑘)𝑏 − 𝑒−𝑖(𝛼+𝑘)𝑎+𝑖(𝛼−𝑘)𝑎 − 𝑒(𝛽+𝑖𝑘)𝑏−(𝛽+𝑖𝑘)𝑏]    
R.H.S is further simplified as: 

= (𝛼2 − 𝛽2 − 2𝑘2)[𝑒𝑖𝑘(𝑏−𝑎)𝑒𝛽𝑏𝑒−𝛼𝑎 + 𝑒𝑖𝑘(𝑏−𝑎)𝑒−𝛽𝑏𝑒𝑖𝛼𝑎 − 𝑒𝑖𝑘(𝑏−𝑎)𝑒−𝛽𝑏𝑒−𝛼𝑎 − 𝑒𝑖𝑘(𝑏−𝑎)𝑒𝛽𝑏𝑒𝑖𝛼𝑎]   

= (𝛼2 − 𝛽2 − 2𝑘2)(𝑒𝑖𝑘(𝑏−𝑎))[𝑒𝛽𝑏(𝑒−𝑖𝛼𝑎 − 𝑒𝑖𝛼𝑎) + 𝑒−𝛽𝑏(𝑒𝑖𝛼𝑎 − 𝑒−𝑖𝛼𝑎)]  

L.H.S is further simplified as: 

= (2𝑖𝛼𝛽 − 2𝑘2)[𝑒−2𝑖𝑎𝑘 + 𝑒2𝑖𝑏𝑘 − 𝑒𝑖𝑘(𝑏−𝑎)𝑒−𝑏𝛽𝑒−𝑖𝛼𝑎 − 𝑒𝑖𝑘(𝑏−𝑎)𝑒𝑏𝛽𝑒𝑖𝛼𝑎]    

+(2𝑖𝛼𝛽 − 2𝑘2)[𝑒𝑖𝑘(𝑏−𝑎)𝑒−𝑏𝛽𝑒𝑖𝛼𝑎 + 𝑒𝑖𝑘(𝑏−𝑎)𝑒−𝑏𝛽𝑒−𝑖𝛼𝑎 − 𝑒−2𝑖𝑎𝑘 − 𝑒2𝑖𝑏𝑘]  

= (2𝑖𝛼𝛽 − 2𝑘2)[𝑒𝑖𝑘(𝑏−𝑎)[𝑒−2𝑖𝛼𝑘−𝑖𝑘(𝑏−𝑎) + 𝑒2𝑖𝑘𝑏−𝑖𝑘(𝑏−𝑎) − 𝑒−𝑏𝛽−𝑖𝛼𝑎 − 𝑒𝑖𝛼𝑎+𝑏𝛽]]   

+(2𝑖𝛼𝛽 − 2𝑘2)[𝑒𝑖𝑘(𝑏−𝑎)[𝑒−𝛽𝑏+𝑖𝛼𝑎 + 𝑒𝑏𝛽−𝑖𝛼𝑎  − 𝑒−2𝑖𝛼𝑘−𝑖𝑘(𝑏−𝑎) − 𝑒2𝑖𝑏𝑘−𝑖𝑘(𝑏−𝑎)]]  

Since 𝑒𝑖𝑘(𝑏−𝑎) is a common factor both for the L.H.S and R.H.S, the equation is simplified and written as under: 

R.H.S. 

= (𝛼2 − 𝛽2)[𝑒𝛽𝑏(𝑒−𝑖𝛼𝑎 − 𝑒𝑖𝛼𝑎) + 𝑒−𝛽𝑏(𝑒𝑖𝛼𝑎 + 𝑒−𝑖𝛼𝑎)] − 2𝑘2[𝑒𝛽𝑏(𝑒−𝑖𝛼𝑎 − 𝑒𝑖𝛼𝑎) + 𝑒−𝛽𝑏(𝑒𝑖𝛼𝑎 − 𝑒−𝑖𝛼𝑎)]  

L.H.S is: 
= (2𝑖𝛼𝛽)[𝑒−2𝑖𝛼𝑘−𝑖𝑘(𝑏−𝑎) + 𝑒2𝑖𝑘𝑏−𝑖𝑘(𝑏−𝑎) − 𝑒−𝑏𝛽−𝑖𝛼𝑎 − 𝑒𝑖𝛼𝑎+𝑏𝛽] − 2𝑘2[𝑒−2𝑖𝛼𝑘−𝑖𝑘(𝑏−𝑎) + 𝑒2𝑖𝑘𝑏−𝑖𝑘(𝑏−𝑎) − 𝑒−𝑏𝛽−𝑖𝛼𝑎 − 𝑒𝑖𝛼𝑎+𝑏𝛽] 

+(2𝑖𝛼𝛽)[𝑒−𝛽𝑏+𝑖𝛼𝑎 + 𝑒𝑏𝛽−𝑖𝛼𝑎  − 𝑒−2𝑖𝛼𝑘−𝑖𝑘(𝑏−𝑎) − 𝑒2𝑖𝑏𝑘−𝑖𝑘(𝑏−𝑎)] − 2𝑘2[𝑒−𝛽𝑏+𝑖𝛼𝑎 + 𝑒𝑏𝛽−𝑖𝛼𝑎  − 𝑒−2𝑖𝛼𝑘−𝑖𝑘(𝑏−𝑎) − 𝑒2𝑖𝑏𝑘−𝑖𝑘(𝑏−𝑎)]  

On expanding  𝑘2 terms of both L.H.S and R.H.S and equating them, we find the result yields zero value. Now by 

equating L.H.S and R.H.S and simplifying 

(−𝛼2 + 𝛽2)(𝑒𝑖𝛼𝑎 − 𝑒−𝑖𝛼𝑎)(𝑒𝛽𝑏 − 𝑒−𝛽𝑏) = (2𝑖𝛼𝛽)[2𝑒−𝑖𝑘(𝑏+𝑎) + 2𝑒𝑖𝑘(𝑏+𝑎)] − 2𝑖𝛼𝛽[(𝑒𝑖𝛼𝑎 + 𝑒−𝑖𝛼𝑎)(𝑒𝛽𝑏 + 𝑒−𝛽𝑏)]  
(−𝛼2+𝛽2)

(2𝑖𝛼𝛽)
(𝑒𝑖𝛼𝑎 − 𝑒−𝑖𝛼𝑎)(𝑒𝛽𝑏 − 𝑒−𝛽𝑏) = [2𝑒−𝑖𝑘(𝑏+𝑎) + 2𝑒𝑖𝑘(𝑏+𝑎)] − [(𝑒𝑖𝛼𝑎 + 𝑒−𝑖𝛼𝑎)(𝑒𝛽𝑏 + 𝑒−𝛽𝑏)] (38) 

Dividing equation 38 throughout by 2 
(−𝛼2+𝛽2)

(2𝛼𝛽)
[

(𝑒𝑖𝛼𝑎−𝑒−𝑖𝛼𝑎)

2𝑖
(𝑒𝛽𝑏 − 𝑒−𝛽𝑏)] = [𝑒−𝑖𝑘(𝑏+𝑎) + 𝑒𝑖𝑘(𝑏+𝑎)] − [(𝑒𝑖𝛼𝑎 + 𝑒−𝑖𝛼𝑎)

(𝑒𝛽𝑏+𝑒−𝛽𝑏)

2
]  (39) 
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But from hyperbolic function: 
(𝑒𝑖𝛼𝑎−𝑒−𝑖𝛼𝑎)

2𝑖
= sin 𝛼𝑎    (40a) 

(𝑒𝑖𝛼𝑎 + 𝑒−𝑖𝛼𝑎) = 2 cos 𝛼𝑎   ` (40b) 
(𝑒𝛽𝑏+𝑒−𝛽𝑏)

2
= cosh 𝛽𝑏   (40c) 

(𝑒𝛽𝑏 − 𝑒−𝛽𝑏) = 2 sinh 𝛽𝑏   (40d) 

[𝑒−𝑖𝑘(𝑏+𝑎) + 𝑒𝑖𝑘(𝑏+𝑎)] = 2 cos 𝑘(𝑎 + 𝑏)  (40e) 

Now by substituting equations (40a), (40b), (40c), (40d), 

and (40e) into equation (39), we get  
(−𝛼2+𝛽2)

(2𝛼𝛽)
2 sin 𝛼𝑎 sinh 𝛽𝑏    

= 2 cos 𝑘(𝑎 + 𝑏) − 2 cos 𝛼𝑎 cosh 𝛽𝑏   (41) 

Thus, the solution of the determinant (equation 36)   can 

be written as: 
(−𝛼2+𝛽2)

(2𝛼𝛽)
sin 𝛼𝑎 sinh 𝛽𝑏 + cos 𝛼𝑎 cosh 𝛽𝑏 = cos 𝑘(𝑎 + 𝑏)  

Equation (41) is complicated but a simplification is 

possible. Kronig and Penney considered the possibility 

that V0b remains finite. Such function is called delta 

function. Under these circumstances  

sinh 𝛽𝑏 → 𝛽𝑏  

And 

cosh 𝛽𝑏 → 1 as 𝑏 → 0.   
Hence equation 42 becomes 
(−𝛼2+𝛽2)

(2𝛼𝛽)
𝛽𝑏 sin 𝛼𝑎 + cos 𝛼𝑎 = cos 𝑘𝑎  (42) 

Now  

𝛽2 − 𝛼2 =
8𝜋2𝑚

ℎ2 (𝑉0 − 𝐸) −
8𝜋2𝑚

ℎ2 𝐸 =
8𝜋2𝑚

ℎ2
(𝑉0 − 2𝐸)   

since  𝑉0 ≫ 𝐸  

𝛽2 − 𝛼2 =
8𝜋2𝑚

ℎ2
(𝑉0)    (43) 

By substituting equation (43) into the equation (42), we 

get 
8𝜋2𝑚(𝑉0) 

(2𝛼𝛽ℎ2)
𝛽𝑏 sin 𝛼𝑎 + cos 𝛼𝑎 = cos 𝑘𝑎 (44) 

where 𝑝 =
𝑚𝑉0𝑎𝑏

ћ2    

 (
𝑚𝑉0𝑎𝑏

ћ2
)

sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎  

𝑝
sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎    (45) 

The term V0b is called the barrier strength. The term p in   

equation (45) is sometime referred as the scattering 

power of the potential barrier. It is a measure of the 

strength with which electron in crystal attracted to the 

ions on the crystal lattice sites. Also,  

𝛼2 =
8𝜋2𝑚

ℎ2
𝐸  

𝐸 =
𝛼2ℎ2

8𝜋2𝑚
   

and  

𝑘 =
2𝜋

𝜆
      (46) 

Equation 48 is a condition of the existences of a solution 

for the electron wave function. 

There are only two variables in equation (45), namely 

𝛼 𝑎𝑛𝑑 𝑘. The R.H.S of equation (45) is bounded since it 

can only assume values within 0 and 1. If we plot the 

L.H.S of this equation against𝛼𝑎, it will be possible to 

determine those values of 𝛼 (and hence energy) which are 

permissible; that is, permit 𝑝
sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 to take value 

between 0 and 1. When each of these values is set equal 

to cos(ka), K is determined. Then 𝛼 can be found from 

equation (13). Periodic potential is obtained by solve 

above equation. L.H.S of the equation is bounded by 

R.H.S (±). 

Case I: when 𝑝 → ∞, sin 𝛼𝑎 = 0  

and 

𝛼𝑎 = 𝑛𝜋  ⇛  𝛼 =
𝑛𝜋

𝑎
 

By squaring both side 

𝛼2 = (
𝑛𝜋

𝑎
)

2
  

But 

𝛼2 =
2𝑚

ћ2 𝐸    (47) 

Equating equation (3.11) and (3.46) we get 
2𝑚

ℏ2 𝐸 = (
𝑛𝜋

𝑎
)

2
  

Therefore 

𝐸 =
ћ2

2𝑚
(

𝑛𝜋

𝑎
)

2
     (48) 

𝑎 =
𝑛𝜆

2
               (49a) 

𝜆 =
𝑐

𝑓
        ⇛    𝑡 =

1

𝑓
  

Therefore  

𝜆 = 𝑐𝑡       (49b) 

By putting equations (49a) and (49b) into (44) we get 

𝐸 =
2ћ2𝜋2

𝑚𝑐2𝜏2     (50) 

Where 𝜏 in the equation (48) is the time 

Case II:   When  𝑝 → 0,  

cos 𝛼𝑎 = 𝑐𝑜𝑠𝑘𝑎     (51) 
𝛼 = 𝑘,     ⇛      𝛼2 = 𝑘2 ,  

𝑘2 =
2𝜋2

𝜆2   

𝐸 =
𝜋2ћ2

𝜆2𝑚
      (52) 

From de-Broglie hypothesis 

𝜆2 =
ћ2

𝑝2    ⇛     𝜆2𝑝2 = ћ2 

ћ2 =
ℎ2

8𝜋2  

1

𝜆2 =
4𝜋2𝑝2

ℎ2   

𝐸 =
𝜋2

𝑚

ℎ2

8𝜋2

4𝜋2𝑝2

ℎ2   

𝐸𝑒𝑥𝑡𝑟𝑒𝑚𝑒 =
𝑝2 

2𝑚 
=

1

2
𝑚𝑣2    (53) 

𝐸𝑇 =
3

2
𝑘𝐵𝑇    (54) 

By equating Eextreme   and  ET  we get 
3

2
𝑘𝐵𝑇 =

1

2
𝑚𝑣2  

𝑣 = √
3𝑘𝐵𝑇

𝑚
     (55) 

Equation (55) is the velocity of free electron in lattice, it 

is extreme velocity. By equating equation (50) and 

equation (54) we get 
3

2
𝑘𝐵𝑇 =

2ћ2𝜋2

𝑚𝑐2𝜏2  

𝜏 = √
4ћ2𝜋2

3𝑚𝑘𝐵𝑇𝑐2    (56) 

Equation (54) is the average time (𝜏) per temperature (k) 
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RESULTS AND DISCUSSION 

Table 1: Variation of Power Scatter Barrier Depending on Different αa 

𝒏 𝑬𝒏(𝑱) 𝝀(𝒎) 𝒌 𝒌𝒂 𝜶 𝜶𝒂 𝑭(𝜶𝒂)) 

1 3.76E+01 3E-10 6.073E-21 9.11E-31 3.E+10 4.7296615 0.7918 

2 1.50E+02 1.5E-10 1.215E-20 1.822E-30 6.E+10 9.459323 0.9964 

3 3.38E+02 1E-10 1.822E-20 2.733E-30 9.E+10 14.188985 1.06932 

4 6.02E+02 7.5E-11 2.429E-20 3.644E-30 1.E+11 18.918646 1.00359 

5 9.40E+02 6E-11 3.037E-20 4.555E-30 2.E+11 23.648308 0.95851 

6 1.35E+03 5E-11 3.644E-20 5.466E-30 2.E+11 28.377969 0.99641 

7 1.84E+03 4.3E-11 4.251E-20 6.377E-30 2.E+11 33.107631 1.02953 

8 2.41E+03 3.8E-11 4.859E-20 7.288E-30 3.E+11 37.837292 1.00359 

9 3.05E+03 3.3E-11 5.466E-20 8.199E-30 3.E+11 42.566954 0.97714 

10 3.76E+03 3E-11 6.073E-20 9.11E-30 3.E+11 47.296615 0.99642 

11 4.55E+03 2.7E-11 6.681E-20 1.002E-29 3.E+11 52.026277 1.01859 

12 5.41E+03 2.5E-11 7.288E-20 1.093E-29 4.E+11 56.755938 1.00357 

13 6.35E+03 2.3E-11 7.895E-20 1.184E-29 4.E+11 61.4856 0.98438 

14 7.37E+03 2.1E-11 8.503E-20 1.275E-29 4.E+11 66.215261 0.99644 

15 8.46E+03 2E-11 9.11E-20 1.367E-29 5.E+11 70.944923 1.01342 

16 9.63E+03 1.9E-11 9.717E-20 1.458E-29 5.E+11 75.674584 1.00355 

17 1.09E+04 1.8E-11 1.032E-19 1.549E-29 5.E+11 80.404246 0.98828 

18 1.22E+04 1.7E-11 1.093E-19 1.64E-29 6.E+11 85.133907 0.99646 

19 1.36E+04 1.6E-11 1.154E-19 1.731E-29 6.E+11 89.863569 1.01037 

20 1.50E+04 1.5E-11 1.215E-19 1.822E-29 6.E+11 94.59323 1.00353 

 

Table 2: Variation of Energy with Temperature and Principle Quantum Number 

𝒏 𝑬𝒏(𝑱) 𝝀(𝒎) 𝒗𝒏(𝒎
𝒔⁄ ) 𝑻(𝒌) 𝒗𝑻(𝒌/𝒌𝒈) 𝑬𝒑𝒆𝒓 𝒕𝒆𝒎𝒑(𝑱) 𝒍𝒐𝒈𝑬𝒑𝒆𝒓 𝒕𝒆𝒎𝒑 𝝉(𝒔𝟐𝒎−𝟐𝒌−𝟏) 

1 3.76E+01 3E-10 4.50945E-74 273 1.114E+05 5.6511E-21 -20.2479 6.71E-51 

2 1.50E+02 1.5E-10 9.0189E-74 337 1.238E+05 6.9759E-21 -20.1564 7.46E-51 

3 3.38E+02 1E-10 1.35284E-73 473 1.466E+05 9.7911E-21 -20.0092 8.84E-51 

4 6.02E+02 7.5E-11 1.80378E-73 276 1.120E+05 5.7132E-21 -20.2431 6.75E-51 

5 9.40E+02 6E-11 2.25473E-73 609 1.664E+05 1.26063E-20 -19.8994 1.00E-50 

6 1.35E+03 5E-11 2.70567E-73 745 1.840E+05 1.54215E-20 -19.8119 1.11E-50 

7 1.84E+03 4.3E-11 3.15662E-73 279 1.126E+05 5.7753E-21 -20.2384 6.79E-51 

8 2.41E+03 3.8E-11 3.60756E-73 881 2.001E+05 1.82367E-20 -19.7391 1.21E-50 

9 3.05E+03 3.3E-11 4.05851E-73 1017 2.150E+05 2.10519E-20 -19.6767 1.30E-50 

10 3.76E+03 3E-11 4.50945E-73 282 1.132E+05 5.8374E-21 -20.2338 6.82E-51 

11 4.55E+03 2.7E-11 4.9604E-73 1153 2.289E+05 2.38671E-20 -19.6222 1.38E-50 

12 5.41E+03 2.5E-11 5.41134E-73 1289 2.420E+05 2.66823E-20 -19.5738 1.46E-50 

13 6.35E+03 2.3E-11 5.86229E-73 285 1.138E+05 5.8995E-21 -20.2292 6.86E-51 

14 7.37E+03 2.1E-11 6.31323E-73 1425 2.545E+05 2.94975E-20 -19.5302 1.53E-50 

15 8.46E+03 2E-11 6.76418E-73 1561 2.663E+05 3.23127E-20 -19.4906 1.61E-50 

16 9.63E+03 1.9E-11 7.21512E-73 288 1.144E+05 5.9616E-21 -20.2246 6.90E-51 

17 1.09E+04 1.8E-11 7.66607E-73 1697 2.777E+05 3.51279E-20 -19.4543 1.67E-50 

18 1.22E+04 1.7E-11 8.11701E-73 1833 2.886E+05 3.79431E-20 -19.4209 1.74E-50 

19 1.36E+04 1.6E-11 8.56796E-73 291 1.150E+05 6.0237E-21 -20.2201 6.93E-51 

20 1.50E+04 1.5E-11 9.0189E-73 1969 2.991E+05 4.07583E-20 -19.3898 6.71E-51 
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Figure 1(a): Graph of F(αa) = 𝑝
sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 against  𝛼𝑎     Figure 1(b): Graph of E(eV) against n 

 

In Figure 1(a), the graph depicts F(αa) against (αa), 

revealing that energy is damped within the +1 power 

scatter barrier. As (αa) increases, the energy of the 

phonon in the crystal lattice decreases until it reaches a 

point of constant F(αa). The power scatter barrier for any 

crystal lattice can be determined using the model  

𝐹(𝛼𝑎)  =  6 × 10−5(𝛼𝑎)  +  0.9888. 

Moving to Figure 1(b), the graph of En against n 

illustrates that as the principal quantum number (n) 

increases, the energy (En) also increases. This indicates 

that the electron within the crystal lattice is confined to 

its orbital in the unit atom, and at that point, the power 

scatter barrier is infinite. The energy En for any crystal 

lattice can be determined using the model  

𝐸𝑛  =  13.7 𝑛2 . 

In Figure 1(c), the graph of ET against Temperature 

demonstrates that as the temperature increases, the 

energy also increases. This suggests that the electron 

inside the lattice is freely moving throughout, and at that 

point, the power scatter barrier is finite. 

 

  
Figure 1(c): Graph of Log Eper temp  against T(K) Figure 1(d): Graph of Log E per temp   against v(m/s) 

 

  
Figure 1(e): Graph of Log E per temp    against vT  Figure 1(f): Graph of Log E per temp    against En (J) 
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Finally, in Figure 1(d), the graph of ET against v(m/s) 

indicates that the velocity of the phonon is negligible 

inside the lattice. However, this relationship is applicable 

for determining the amplitude of the electron. 

 

Discussion 

In Figure 1(a), the graph depicts F(αa) against (αa), 

revealing that energy is damped within the +1 power 

scatter barrier. As (αa) increases, the energy of the 

phonon in the crystal lattice decreases until it reaches a 

point of constant F(αa). The power scatter barrier for any 

crystal lattice can be determined using the model  

𝐹(𝛼𝑎)  =  6 ∗  10−5(𝛼𝑎)  +  0.9888. 

Moving to Figure 1(b), the graph of En against n 

illustrates that as the principal quantum number (n) 

increases, the energy (En) also increases. This indicates 

that the electron within the crystal lattice is confined to 

its orbital in the unit atom, and at that point, the power 

scatter barrier is infinite. The energy En for any crystal 

lattice can be determined using the model  

𝐸𝑛 =  13.7𝑛2. 

In Figure 1(c), the graph of ET against Temperature 

demonstrates that as the temperature increases, the 

energy also increases. This suggests that the electron 

inside the lattice is freely moving throughout, and at that 

point, the power scatter barrier is finite. 

Finally, in Figure 1(d), the graph of ET against v(m/s) 

indicates that the velocity of the phonon is negligible 

inside the lattice. However, this relationship is applicable 

for determining the amplitude of the electron. 

Fig 1(e): The graph of ET against vT shows that the ET is 

decreasing the velocity vT of the free electron is also 

increasing. While for the fact that in a lattice the extreme 

energy of the phonon is negligible, because it is massless. 

Figure 1(f): Graph of Log Eper temp against En (J) shows 

that as the energy of the restricted electron increase the 

energy of free electron is reduced due to the energy gap 

or barrier scatter. The researcher noticed that to reduce 

the energy band one must have a high temperature in the 

crystalline.  

 

CONCLUSION 

The findings derived from this research offer valuable 

conclusions: The energy within the +1 power scatter 

barrier experiences damping as (αa) increases, reaching 

a constant point of F(αa). The power scatter barrier for 

any crystal lattice can be determined using the 

model 𝐹(𝛼𝑎)  =  6 × 10−5(𝛼𝑎)  +  0.9888. The 

electron within the crystal lattice is confined to its orbital 

in the unit atom, resulting in an infinite power scatter 

barrier. The energy En for any crystal lattice can be 

determined from the model En = 13.7n2. Increasing 

temperature leads to a corresponding increase in energy, 

indicating that the electron inside the lattice is freely 

moving, and the power scatter barrier is finite. The 

velocity of the electron inside the lattice is negligible, yet 

it is instrumental in determining the electron's amplitude. 

The decrease in ET corresponds to an increase in the 

velocity vT of the free electron. In a lattice, the extreme 

energy of the phonon is negligible due to its massless 

nature. The energy of the restricted electron increases, 

causing a reduction in the energy of the free electron due 

to the presence of an energy gap or barrier scatter. 

Moreover, the study highlights that to reduce the energy 

band, a high temperature in the crystalline structure is 

necessary. Electron transition from the valance band to 

the conducting band requires elevated temperatures 

facilitating movement, leading to an electron lifetime of 

1.63 ×  10−50 𝑠 during this transition. Conduct 

additional research to delve deeper into the mechanisms 

of energy damping within the +1 power scatter barrier as 

(αa) increases. Extend studies to comprehensively 

understand the consequences and applications of an 

infinite power scatter barrier when the electron is 

restricted to its orbital in the unit atom. Explore the 

temperature-dependent energy characteristics in crystal 

lattices in more detail. Investigate how variations in 

temperature impact electron mobility, energy states, and 

the finite nature of the power scatter barrier. Further 

refine the understanding of the negligible velocity of 

electrons inside the lattice and its role in determining 

electron amplitude. Conduct a comprehensive analysis of 

energy transitions within the crystal lattice, especially 

those associated with reductions in energy bands. 

Validate the conclusions drawn from this study through 

experimental validations and practical applications. 

Encourage collaboration with researchers in related fields 

to share insights and data. By addressing these 

recommendations, future research endeavors can build 

upon the foundation laid by this study, expanding our 

knowledge of crystal lattice dynamics and opening 

avenues for innovative applications in materials science 

and quantum physics. 
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