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ABSTRACT 

This work explores the ramifications of introducing the Howusu Metric Tensor into 

the theoretical framework of Riemann's Acceleration within spherical polar 

coordinates, aiming to deepen our comprehension of gravitational interactions. 

Bridging the gap between traditional Cartesian coordinates and spherical polar 

coordinates, the research navigates the challenges posed by rotational symmetry to 

seamlessly integrate Riemann's Acceleration into the latter. The Howusu Metric 

Tensor emerges as a novel mathematical construct tailored to the intricacies of 

spherical polar coordinates, enabling a refined representation of spacetime 

curvature. The Results which are Riemann's acceleration in light of the Howusu 

metric tensor in spherical polar coordinates and consequently a generalization of the 

Newton's equations of motion showcase the modified Riemann's Acceleration 

equations in spherical polar coordinates, revealing subtle differences when 

compared to conventional Cartesian coordinates. Comparative analyses underscore 

the impact of the Howusu Metric Tensor, both quantitatively and qualitatively, 

offering insights into the altered dynamics of gravitational forces. This signifies a 

paradigm shift in our approach to gravitational theory, showcasing the potential of 

the Howusu Metric Tensor to unravel novel insights and broaden the horizons of 

theoretical physics. The findings not only advance our understanding of 

gravitational interactions but also set the stage for further exploration and 

refinement in the ever-evolving landscape of theoretical physics. 

INTRODUCTION 

A cornerstone of theoretical physics has been the pursuit 

of a deeper understanding of gravitational phenomena, 

and over time, a variety of mathematical frameworks 

have been used to model and explain the intricacies 

involved in gravity's influence on spacetime. Within 

these frameworks, Riemann's Acceleration is a key idea 

that provides understanding of how spacetime curves 

when gravitational forces are applied (Zha, 2023; Butto, 

2020; Corda, 2009).  In our pursuit to refine and extend 

the applicability of Riemann's Acceleration, we explore 

the realm of spherical polar coordinates; a coordinate 

system known for its suitability in describing 

phenomena with inherent rotational symmetries 

(Obaje,2023; Koffa et al.,2016; Koffa et 

al.,2023;Staniforth,2014).This investigation takes an 

innovative turn with the introduction of a novel metric 

tensor, the Howusu Metric Tensor ( Abduljelili & 

Bernard, 2018; Omonile et al., 2015a; Busche & Hillier, 

2000).This tensor not only serves as a mathematical 

construct for mapping the geometry of spacetime but 

also opens new avenues for exploring gravitational 

dynamics beyond the conventional Cartesian 

coordinates. 

The purpose of this study is two-fold: first, to 

seamlessly integrate Riemann's Acceleration within the 

framework of spherical polar coordinates, and second, 

to examine the profound implications of the Howusu 

Metric Tensor on our understanding of the gravitational 

theory. By adopting this unconventional approach, we 
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aim to provide a fresh perspective on the dynamics of 

gravitational interactions, offering a more 

comprehensive and nuanced representation of spacetime 

curvature. 

To comprehend the significance of our endeavour, a 

foundational understanding of Riemann's Acceleration 

in Cartesian coordinates is essential. In Cartesian space, 

gravitational interactions are conventionally described 

using a metric tensor that characterizes the curvature of 

spacetime. Riemann's Acceleration, within this 

framework, provides a means to analyse the deviation 

from inertial motion induced by gravitational forces, 

laying the groundwork for our exploration (Krisch & 

Smalley,1995). While Cartesian coordinates excel in 

simplicity (Swarztrauber et al.,1998), they may fall 

short when dealing with phenomena exhibiting 

rotational symmetry (Barber, 2010). Spherical polar 

coordinates present an alternative perspective, 

particularly adept at handling systems with spherical or 

cylindrical symmetry. However, the transition from 

Cartesian to spherical polar coordinates introduces 

complexities, necessitating a recalibration of Riemann's 

Acceleration to this new coordinate system. 

Central to our study is the introduction of the Howusu 

Metric Tensor, a novel mathematical construct designed 

to capture the intricacies of spacetime curvature in 

spherical polar coordinates. The tensor's derivation 

stems from a meticulous consideration of the geometry 

inherent in these coordinates, addressing challenges 

posed by non-Cartesian systems. The Howusu Metric 

Tensor serves as a pivotal bridge, allowing us to extend 

Riemann's Acceleration seamlessly into spherical polar 

coordinates. Building upon the established principles of 

Riemann's Acceleration and the foundations of the 

Howusu Metric Tensor, (Omonile et al.,2015b; 

Obaje,2023)), we develop the theoretical basis for 

applying this novel tensor to the gravitational 

framework. This involves redefining the equations 

governing Riemann's Acceleration to suit the nuances of 

spherical polar coordinates and incorporating the 

Howusu Metric Tensor into these formulations. The 

theoretical framework thus established forms the 

backbone of our exploration into the altered dynamics 

of gravitational interactions.  

 

Theory 

In Einstein spherical polar coordinates (𝑟,  𝜃,  𝜙,  𝑥0), 

the Howusu metric tensor is expressed as (Obaje,2023): 

𝑔00 = exp (
2

𝑐2 𝑓)    (1) 

𝑔11 = exp (−
2

𝑐2 𝑓)   (2) 

𝑔22 = 𝑟2𝑒𝑥𝑝(− 2

𝑐2𝑓)   (3) 

𝑔33 = 𝑟2𝑠𝑖𝑛2𝜃𝑒𝑥𝑝(− 2

𝑐2𝑓)   (4) 

𝑔𝜇𝜈 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (5) 

The contra-variant gives 

𝑔00 = exp (
2

𝑐2
𝑓)

−1
   (6) 

𝑔11 = exp (−
2

𝑐2
𝑓)

−1
   (7) 

𝑔22 =
1

𝑟2
𝑒𝑥𝑝(− 2

𝑐2𝑓)
−1

   (8) 

𝑔33 =
1

𝑟2𝑠𝑖𝑛2
𝜃𝑒𝑥𝑝(− 2

𝑐2𝑓)
−1

   (9) 

𝑔𝜇𝜈 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (10) 

Where 𝑥0 = 𝑐𝑡 and t is the coordinate time, c is the speed 

of light in vacuum, and f is the gravitational scalar 

potential given as −
𝐺𝑀

𝑟
 

Substituting for f, we have  

𝑔00 = exp (−
2𝐺𝑀

𝑐2𝑟
)   (11) 

𝑔11 = exp (
2𝐺𝑀

𝑐2𝑟
)    (12) 

𝑔22 = 𝑟2𝑒𝑥𝑝 (
2𝐺𝑀

𝑐2𝑟
)   (13) 

𝑔33 = 𝑟2𝑠𝑖𝑛2𝜃𝑒𝑥𝑝 (
2𝐺𝑀

𝑐2𝑟
)   (14) 

𝑔𝜇𝜈 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (15) 

The contra-variant gives 

𝑔00 = exp (−
2𝐺𝑀

𝑐2𝑟
)

−1
   (16) 

𝑔11 = exp (
2𝐺𝑀

𝑐2𝑟
)

−1
   (17) 

𝑔22 =
1

𝑟2 𝑒𝑥𝑝 (
2𝐺𝑀

𝑐2𝑟
)

−1
   (18) 

𝑔33 =
1

𝑟2𝑠𝑖𝑛2 𝜃𝑒𝑥𝑝 (
2𝐺𝑀

𝑐2𝑟
)

−1
   (19) 

𝑔𝜇𝜈 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (20) 

 The linear acceleration tensor in 4-dimensional space-

time, 𝑎𝑅
∝; is given in all gravitational field and all 

orthogonal curvilinear coordinates 𝑥∝ by [Omonile et al., 

2015b]; 
𝑎𝑅

∝ = 𝑥̈∝ + 𝛤𝜇𝑣
∝ 𝑥̇𝜇𝑥̇𝑣

   (21) 

Where 𝛤𝜇𝑣
∝  is the Christoffel symbols or affine connection 

of the second kind pseudo tensor and a dot denotes one 

differentiation with respected to proper time, 

𝑔αδГ𝛽𝛾
𝛿 =

1

2
(

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾 +
𝜕𝑔𝛼𝛾

𝜕𝑥𝛽 −
𝜕𝑔𝛽𝛾

𝜕𝑥𝛼 )  (22) 

 The affine connection simply requires us to compute the 

gradient of the entire metric as well as the partial 

derivatives of each metric coefficient with respect to the 

metric components. Thus, the non-zero terms are given by; 

Г10
0 = Г01

0 =
𝐺𝑀

𝑐2𝑟2    (23) 

Γ00
1 = − 

𝐺𝑀

𝑐2𝑟2    (24) 

Г11
1 = −

𝐺𝑀

𝑐2𝑟2    (25) 

Г22
1 =

𝐺𝑀

𝑐2 − 𝑟    (26) 

Г33
1 =

𝐺𝑀

𝑐2 𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛2𝜃   (27) 

Г21
2 =

1

r
−

𝐺𝑀

𝑐2r2    (28) 

Г33
2 = − cos 𝜃 sin 𝜃   (29) 

Г13
3 =

1

𝑟
−

𝐺𝑀

𝑐2r2    (30) 

Г23
3 =

cos 𝜃

sin 𝜃
= cot 𝜃   (31) 

Expanding (21) with the substitution of (21)-(31), the 

following results applies 

𝑎𝑅
0 = 𝑐𝑡̈ +

𝐺𝑀

𝑐2𝑟2 ṫ𝑟̇    (32) 
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𝑎𝑅
1 = 𝑟̈ − 

𝐺𝑀

𝑟2 ṫ2 −
𝐺𝑀

𝑐2𝑟2 𝑟̇2 + (
𝐺𝑀

𝑐2 − 𝑟) 𝜃̇2 + (
𝐺𝑀

𝑐2 𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛2𝜃) 𝜙̇2    (33) 

𝑎𝑅
2 = 𝜃̈2 + (

1

r
−

𝐺𝑀

𝑐2r2) ṙ𝜃̇ + (
1

r
−

𝐺𝑀

𝑐2r2) θ̇𝑟̇ − cos 𝜃 sin 𝜃 θ̇𝜙̇ (
𝐺𝑀

𝑐2 𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛2𝜃) 𝜙̇2  (34) 

𝑎𝑅
3 = 𝜙̈2 + cot 𝜃 θ̇𝜙̇ + cot 𝜃 ϕ̇𝜃̇ + (

1

𝑟
−

𝐺𝑀

𝑐2r2) ṙ𝜙̇ + (
1

𝑟
−

𝐺𝑀

𝑐2r2) 𝜙̇𝑟̇    (35) 

The Riemann’s tensorial Geodesic Equations of motion for a particle of non- zero rest mass in gravitational fields is 

given by 
𝜕

𝜕𝜏
(𝑚𝑜𝑢𝜇) = 𝑚𝑜

𝜕

𝜕𝜏
(𝑢𝜇) = 𝑚𝑜𝑎𝜇 = 0       (36) 

Where 
𝜕

𝜕𝜏
 is the covariant differentiation with respect to the proper time τ, 𝑚𝑜 is the rest mass, 𝑢𝜇 is the four- 

dimensional linear acceleration tensor given by (32) to (35). 

As a result, in light of the Howusu Metric tensor, Riemann's geodesic tensorial equations of motion are 

communicated as follows: 

𝑚𝑜 (𝑐𝑡̈ +
𝐺𝑀

𝑐2𝑟2 ṫ𝑟̇) = 0         (37) 

𝑚𝑜 (𝑟̈ − 
𝐺𝑀

𝑟2 ṫ2 −
𝐺𝑀

𝑐2𝑟2 𝑟̇2 + (
𝐺𝑀

𝑐2 − 𝑟) 𝜃̇2 + (
𝐺𝑀

𝑐2 𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛2𝜃) 𝜙̇2) = 0   (38) 

𝑚𝑜 (
𝜃̈2 + (

1

r
−

𝐺𝑀

𝑐2r2) ṙ𝜃̇ + (
1

r
−

𝐺𝑀

𝑐2r2) θ̇𝑟̇  −

cos 𝜃 sin 𝜃 θ̇𝜙̇ (
𝐺𝑀

𝑐2 𝑠𝑖𝑛2𝜃 − 𝑟𝑠𝑖𝑛2𝜃) 𝜙̇2
) = 0      (39) 

𝑚𝑜 (𝜙̈2 + cot 𝜃 θ̇𝜙̇ + cot 𝜃 ϕ̇𝜃̇ + (
1

𝑟
−

𝐺𝑀

𝑐2r2) ṙ𝜙̇ + (
1

𝑟
−

𝐺𝑀

𝑐2r2) 𝜙̇𝑟̇) = 0    (40) 

 

RESULTS AND DISCUSSION 

In this study, the Riemann's acceleration in light of the 

Howusu Metric in the spherical polar coordinates have 

been developed [(32)-(35)] and utilized to create 

equations of motion (37), (38), (39) and (40) for a non- 

gravitational field. This system of equations of motion, 

which is a generalization of the well-known Newton's 

equations of motion, most naturally reduces to the 

corresponding pure Newtonian equations in the limit of 

𝑐𝑜. Therefore, (37) is the general time dilation in the 

gravitational field, which is regular everywhere, 

continues everywhere, including all boundaries, 

continues normal derivative everywhere, including all 

boundaries, and its reciprocal decreases at an infinite 

distance from the source. The first space direction, in 

spherical polar coordinate by equation (38) which is the 

complete and exact solution in the radial direction in the 

gravitational field is regular everywhere, continues 

everywhere including all boundaries, continues normal 

derivative everywhere including all boundaries and its 

reciprocal decreases at infinite distance from source. 

Equation (39) provides the full and exact solution for 

the polar direction in the gravitational field. It is regular 

everywhere, continues everywhere, including all 

boundaries, and its reciprocal decreases at infinite 

distance from the source. The gravitational field's 

azimuthal direction is complete and exact, with the third 

space direction, μ=3, represented by equation (40) 

which is the normal derivative that is continuous and 

regular everywhere, including all boundaries, and whose 

reciprocal decreases at infinite distance from the source. 

The derived set of equations of motion represents a 

significant generalization of existing formulations in the 

spherical coordinate system. By incorporating the 

Howusu metric tensor, these equations offer a more 

complete and accurate representation of gravitational 

dynamics. This generalization ensures that the interplay 

of all four coordinates is considered, providing a more 

nuanced understanding of how bodies move within 

gravitational fields. The ability of the Howusu metric 

tensor to provide a unified description of gravitational 

effects across all coordinates is a key contribution. This 

feature is particularly crucial in scenarios where the 

influence of different coordinates is intertwined. The 

resulting equations of motion allow for a more holistic 

analysis of gravitational interactions, offering insights 

into complex systems where the effects in multiple 

coordinates cannot be decoupled. The significance of 

these results extends beyond theoretical physics, with 

potential applications in astrophysics, cosmology, and 

other related disciplines. The more comprehensive 

equations derived from the Howusu metric tensor will 

definitely lead to improved predictions and models in 

scenarios involving diverse gravitational phenomena, 

from celestial mechanics to the behaviour of massive 

bodies in cosmological contexts. 

 

CONCLUSION 

The significance of this research lies in its potential to 

enhance our theoretical grasp of gravity, shedding light 

on aspects that may have been overlooked in traditional 

formulations. Through this endeavour, we have 

contributed to the ongoing dialogue within the scientific 

community, pushing the boundaries of gravitational 

theory and paving the way for new avenues of 

exploration in theoretical physics. The development and 

application of the Howusu metric tensor represent a 

noteworthy contribution to gravitational physics. The 
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generality and versatility of the tensor, coupled with the 

resulting equations of motion, offer a more complete 

and unified approach to understanding bodies in 

gravitational fields, with implications that reach across 

various scientific disciplines. 
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