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ABSTRACT 

Recently, a four-parameter embedding function that is sufficiently rich to handle 

both positive and negative Cauchy discrepancy (𝐂𝟏𝟐 − 𝐂𝟒𝟒) has been produced by 

modifying the embedding function of Yuan et al. (2003)1, a modification to 

MEAM92, which failed to produce a reasonable surface energy when applied to bcc 

Vanadium V. We compute the three low-index surface energies of Li and V using 

the novel model Generalized Embedding Atom method (GEAM) (Oni-Ojo et al, 

2007) parameters (iterated values), and the results fall within the experimental 

average. 

INTRODUCTION 

Semi-empirical atomistic simulations have shown to be 

an invaluable asset in the investigation of metallic 

properties and structure. The selection of an acceptable 

interatomic potential, or the way the constituent atoms 

interact, is fundamental to any such investigation. More 

fundamental techniques are usually too complicated to 

perform the necessary computations efficiently, while 

simple potentials are usually too rigid to represent real 

metals effectively. 

Daw and Baskes (1983 and 1984) devised the embedded 

atom technique (EAM) for creating a mathematical 

model of a metal. In this method, the energy needed to 

insert an impurity atom in a lattice is exclusively 

determined by the electron density at that specific 

location. In this strategy, each atomic species is 

assumed to have a distinct energy function that is 

determined only by electron density. The EAM 

predictions have been positive in that the model’s 

results are comparable with experimental values that are 

available. 

Three functions need to be found in order to use the 

EAM practically: the pair potential ϕ(R) between any 

two atoms, the density function ρ(R), and the 

embedding function F(ρ). But for single crystal surface 

energy, the EAM estimate is almost 50% less than the 

polycrystalline experimental value (Baskes, 1992). 

Attempts to improve the EAM resulted in the 

development of the modified embedded atom method 

(MEAM) by Baskes et al. (1989). For numerous 

materials, the MEAM parameters are provided in 

(Baskes, 1992). Although various MEAM variants have 

been developed (Lee et al, 2001, Baskes, 1997, Baskes, 

1999), the theory and characteristics of the MEAM92 

described in (Baskes, 1992) are the most often 

employed. 

The primary distinction between EAM and MEAM is in 

the development of the density function 𝜌(𝑅). The 

electron density at site i, 𝜌𝑖, in the EAM is given by a 

linear superposition of spherically averaged atomic 

electron densities from nearby atoms to the site i, but in 

the MEAM 𝜌𝑖 is enhanced by angular dependent 

components. 

Yuan et al. (2003)1 added a parameter K to the 

embedding function F(ρ) in MEAM92, hence 

introducing yet another modification to the EAM. With 

hopes that, if the relaxation of surface atom locations 

were to be taken into account, this would allow them get 

over the difficulties they ran into while calculating the 

surface energy of bcc lithium. Despite this alteration, 

the model predicted a mono-vacancy formation energy 

that was 50% higher than the experimental value when 

it was applied to bcc Vanadium (2003)2. 

Oni-Ojo et al (2005, 2007) have adopted a different 

strategy in response to the issues faced by Yuan and 

Coworkers by concentrating their investigation on the 

embedding function's structure, which has not seen as 

much development as the density function ρ(R). In 

terms of the embedding function F(ρ), Yuan et al.'s 

work (2003)1.2 was successfully generalized using a 

simplified form for the atomic electron density ρ(R), as 

is found in various simplified versions of the EAM. 

Additionally, a more flexible embedding function F(ρ) 

was developed, which is characterized by a second order 
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linear differential equation. The outcomes of this work 

demonstrate the rich structure of the Generalized 

Embedding Atom Method (GEAM), our generalized 

model. 

The curvature of F(ρ) at the equilibrium electron density 

ρ(R) determines the Cauchy discrepancy (𝑪𝟏𝟐 − 𝑪𝟒𝟒) in 

the typical EAM (Daw and Baskes, 1984). The GEAM 

embedding function F(ρ), is adaptable enough to 

accommodate both positive and negative curvature. As a 

result, the model is free of the problems associated with 

the use of restrictive variants of F(ρ). 

 

MATERIALS AND METHODS 

The EAM is founded on density functional theory, 

which posits that the energy of a material can be 

represented as a distinct functional of electron density 

(Hohenberg and Kohn, 1964, Kohn and Sham, 1965). 

The most important aspect of the electron density in the 

EAM is regarded to be the local electron density at each 

atomic site, as provided by the surrounding atoms. The 

total energy is split into two parts: electrostatic 

interaction and the energy needed to embed an atom in a 

homogeneous electron gas. As a result, the total energy 

is given by 

𝑬𝒕𝒐𝒕 =  ∑ 𝑭𝒊(𝝆𝒉,𝒊) +
𝟏

𝟐
∑ 𝜙𝑖,𝑗(𝑹𝒊,𝒋)𝒊,𝒋𝑗≠𝑖        (1) 

Where F(ρ) is atom i's embedding energy, 𝜌ℎ,𝑖 is the 

host electron density at atom i due to the surrounding 

atoms, 𝜙𝑖,𝑗(R) is a short-ranged electrostatic interaction 

between atoms i and j, 𝑅𝑖,𝑗 is the distance between 

atoms i and j, and all summations are over all atoms. 

The superposition of atomic electron densities is 

commonly used to approximate the host electron 

density. 

By obtaining the EAM energy form using density 

functional theory, Daw (1989) was able to show the 

physical source of the variables in equation (1). Daw's 

derivation is based on the assumption that the electron 

density may be represented by a superposition of atomic 

electron densities, which overlooks band-structure 

effects. For fcc metals, both of these hypotheses are 

more accurate than for bcc metals. Jacobsen et al. 

(Jacobsen et al., 1987) also used ab initio techniques to 

generate EAM-type functions, and their results suggest 

that fcc metals may be a better fit for the EAM-type 

approach than bcc metals. 

In spite of the remarks made earlier, the EAM has been 

applied to a variety of solids, and one of the most 

unexpected and compelling arguments in favor of the 

method is its capacity to accurately predict a broad 

range of material properties (Adams and Foiles, 1990). 

The F(ρ), 𝜙(𝑅) and  ρ(R) are the three main 

components of the EAM, as shown in equation (1).. To 

identify the three functions, the EAM, as originally 

devised by Daw and Baskes (1983), involves some 

painstaking numerical fitting to various physical 

parameters. Several efforts (Adams and Foiles, 1990, 

Johnson, 1988, Idiodi et al, 1991, Idiodi and Obodi, 

1993) have been made inside the EAM in recent years 

to avoid the tedious numerical fitting required to find 

EAM functions. As a result, Idiodi and Obodi (1993) 

developed an embedding function with three 

parameters, 

𝐹(𝜌) = 𝜇 [𝑓0 {𝑒𝛼𝑓 − 𝑒
−𝛼𝑓(

𝜌

𝜌0
−1)

}]
𝜆𝑓

    (2) 

or 

𝐹(𝜌) = 𝑓0 (
𝜌

𝜌0
)

𝜆𝑓
𝑒

−𝛼𝑓(
𝜌

𝜌0
−1)

      (3) 

Where 𝜇 = ±1, and 𝑓0, 𝛼𝑓 and 𝜆𝑓, are to be determined. 

Within the MEAM, Baskes (1992) utilized a simple 

embedding function (2.4) to study several solids.  

𝐹(𝜌) = 𝐴𝐸0(
𝜌

𝜌0
⁄ ). 𝑙𝑛(

𝜌
𝜌0

⁄ )     (4) 

The sublimation energy is denoted by 𝐸0 in (4), and A is 

the only parameter that needs to be found. Even with its 

simplicity (4), the ρ(R) used in the MEAM still needs to 

be fitted quite laboriously. 

The work of Yuan et al., (2003)1 applied MEAM92 to 

bcc Lithium but modified (4) the form in (5). 

𝐹(𝜌) = 𝐴𝐸0(𝑙𝑛(
𝜌

𝜌0
⁄ ) − 𝐾)     (5) 

The only parameters to be determined are A and K. 

Though (5) assisted in resolving the issues they 

experienced in Li, they failed with bcc Vanadium (Yuan 

et al., 2003)2. 

As a result of the aforementioned issues, the 

shortcomings in the MEAM already mentioned by 

(Baskes et al., 1989) and the inability of the Standard 

EAM to work in materials for which the Cauchy 

discrepancy is negative, Oni-Ojo et al.(2005, 2007) 

adopted an entirely different strategy and looked within 

the EAM, adopting a simplified form of the atomic 

electron density that is found in various EAM versions 

(Adams and Foiles, 1990, Johnson, 1988). They also 

generalized the work of Yuan et al. (2003)1,2 in terms of 

the embedding function F(ρ) and created a more flexible 

embedding function. 

In practice, functional forms for 𝑭𝒊(𝝆𝒉,𝒊) and 𝜙𝑖,𝑗 are 

chosen, and the parameters in these functions are 

established by fitting to a small number of bulk 

properties. If U0 signifies total energy per atom 

(negative of cohesive energy E0) and 𝝆𝒉,𝒊 in the electron 

density function at location R, then we have for a 

monoatomic bcc solid (Daw and Baskes, 1984, Yuan et 

al, 20031, Johnson, 1988, Johnson and Oh, 1989, van 

Midden and Sasse, 1992) within a closest neighbour 

model. 

𝑈0 = 4𝜙1(𝑟0) + 𝐹(𝜌0)   (6) 

0 = 4𝜙1
′ (𝑟0) + 𝐹′(𝜌0) 𝑉11

𝑎⁄   (7) 

𝐵 =
(9𝐶44−4𝐶11)

5
−

2

Ω0
𝐹′(𝜌0)𝑊12 − 1

2Ω0
𝐹′′(𝜌0)𝑉11

2  

     (8) 
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𝐶11 = 𝐺 + 1

Ω0
𝐹′(𝜌0)𝑊11 + 1

Ω0
𝐹′′(𝜌0)𝑉11

2  (9) 

𝐶12 = 𝐺 + 1

Ω0
𝐹′(𝜌0)𝑊12 + 1

Ω0
𝐹′′(𝜌0)𝑉11

2  (10) 
𝑎

4
𝐶44 = 𝐺 + 1

Ω0
𝐹′(𝜌0)𝑊12   (11) 

where 𝐺 =
4𝜙1

′ (𝑟0)

3√3𝑎2 +
2.𝜙1

′′(𝑟0)

3𝑎
  (12) 

and 𝑈0 is the energy per atom, B is the bulk modulus 

and 𝐶𝑖𝑗 the elastic constants written in the Voigt 

notation. 𝑟0 =
√3𝑎 

2
 is the equilibrium nearest neighbor 

distance; a is the lattice constant; Ω0 =
𝑎3

2
 is the volume 

per atom; while 𝑉11, 𝑊11 and 𝑊12 are three basic EAM 

parameters. 

The equations (6) – (11), are the fundamental equations 

of the EAM and they depend on the three fundamental 

functions 𝑭(𝝆), 𝝆(𝒓), 𝝓(𝒓) and their first and second 

derivatives. 

The mono-vacancy formation energy 𝐸𝑖𝑣
𝑓

 is of the form  

𝐸𝑖𝑣
𝑓

= 8𝐹 (
7

8
𝜌0) − 7𝐹(𝜌0) − 𝑈0  (13) 

In this work, 𝐸𝑖𝑣
𝑓

 is chosen to be a known physical input 

and from (11) and (10), gives; 

𝑽𝟏𝟏 = ±√
𝛀𝟎(𝑪𝟏𝟐−𝑪𝟒𝟒)

𝑭′′( 𝝆𝟎)
    (14) 

For materials with 𝑪𝟏𝟐 > 𝑪𝟒𝟒, we demand that 𝑭′′(𝝆𝟎) 

be positive definite while for materials with 𝑪𝟏𝟐 < 𝑪𝟒𝟒,  

𝑭′′(𝝆𝟎) must be negative definite, Oni-Ojo et al.(2007).   

The embedding functions (2-5) have a limitation in 

terms of flexibility. In an earlier study, Oni-Ojo et al. 

(2007) developed a generalized embedded function 

𝑭(𝝆) by altering the work of Yuan et al (2003)1 to a 

robust and flexible embedding function. 

𝐹(𝜌) = 𝐴𝐸0(
𝜌

𝜌0
⁄ )

𝜆
[ln(

𝜌
𝜌0

⁄ )
𝛼

− 𝑘]  (15) 

Where, 𝝀, 𝜶 and K are the variables that provide 

flexibility to the new model.  

𝐹(𝜌0) = −𝐴𝐸0𝑘     (16) 

𝐹′(𝜌0) =
−𝐹(𝜌0)

𝜌0
[𝜆 −

𝛼

𝑘
]    (17) 

 𝐹′′(𝜌0) =
𝐹(𝜌0)

𝜌0
2 [𝜆2 − 2𝜆𝛼

𝑘
+ 𝛼

𝑘
− 𝜆]    (18) 

 At equilibrium, equation (15) yields (16)-(18), where 

the prime signifies first and second differentiation with 

respect to the electron density, 𝝆. We achieved results 

for 𝐴 = ±1 in this study, and the parameters, 𝝀, 𝜶 and K 

are determined by demanding that the embedding 

function 𝑭(𝝆) fulfill equation (13), and so,  

𝜆 =

ln{

1
12[𝐸

𝑖𝑣
𝑓

+11𝐹(𝜌0)+𝑈0]

𝐴𝐸0[ln(
11
12)

𝛼
−𝑘]

}

ln(11
12⁄ )

    (19) 

Knowing 𝝀, 𝜶 and K, the EAM functions and 

parameters are calculated. 

 

RESULTS AND DISCUSSION 

The EAM parameters were derived using some of the 

iterated values for the GEAM parameters A, 𝜶 , 𝝀, and 

K (Oni-Ojo, M.Phil, thesis, 2011) for Li and V. Tables 2 

and 3 show the values. Table 1 shows the input 

parameters.

 

Table 1. Values nput Parameters for bcc Li and V. Lattice Constant a (Å), Bulk Modulus  𝐁𝟎 and Elastic 

Constant GPa, Cohesive 𝐄𝟎 and monovacancy formation energy, 𝐄𝐢𝐯
𝐟  (eV). 

 Cohesion 

energy E0 

(eV) 

Mono-vacancy 

Formation energy 

𝑬𝒊𝒗
𝒇

 (eV) 

Lattice 

Constant a 

(Å) 

Elastic constant (Gpa) Bulk 

Modulus B 

(GPa) 
C11 C12 C44 

Li 1.630 0.340 3.491 0.148 0.125 0.108 0.116 

V 5.310 2.200 3.030 2.290 1.210 0.444 1.570 

 

 Table 2: Calculated EAM Model Parameters for bcc Li corresponding to the iterated GEAM values of 𝜶 and 

K. 

EAM Parameter Model  

I II III IV V VI 

A 1 1 -1 -1 1 1 

𝛼 0.3800 0.3400 0.3600 0.3600 1.0550 1.0440 

K -0.9800 -0.6000 0.5000 0.5400 0.0400 0.0313 

𝜆 1.4079 1.7761 3.3586 3.1723 2.9184 2.9651 

𝐹(𝜌0) [eV] 1.6170 0.9900 0.8250 0.8910 -0.0660 -0.0517 

𝐹′(𝜌0)[eV/𝜌0] 2.9035 2.3194 2.1768 2.2325 1.5481 1.5693 

𝐹′′(𝜌0)[eV/𝜌02] 2.0670 2.7965 3.1391 2.9654 8.0502 8.1915 

V11  [𝜌0] (-) -0.2881 -0.2881 -0.2719 -0.2798 -0.1698 -0.1683 

W11  [𝜌0] 0.0225 0.0281 0.0300 0.0292 0.0421 0.0416 

W12  [𝜌0] -0.1772 -0.2219 -0.2364 -0.2305 -0.3324 -0.3279 

𝜙1(𝑟0) [eV] -0.8168 -0.6600 -0.6188 -0.6353 -0.3960 -0.3996 

𝜙1
′ (𝑟0)[eV/Å] 0.0693 0.0476 0.0422 0.0445 0.0187 0.0188 
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𝜙1
′′(𝑟0)[eV/Å2] 0.0915 0.0844 0.0826 0.0833 0.0749 0.0749 

 

Table.3: Calculated EAM Model Parameters for bcc Li corresponding to the iterated GEAM values of 𝜶 and 

K 

EAM Parameter Model  

I II III IV V VI 

A -1 1 -1 -1 -1 -1 

𝛼 0.0690 0.3800 0.2200 0.2400 0.2600 0.3000 

K 0.3297 -0.3800 1.3400 2.7000 1.2000 3.4000 

𝜆 3.3986 1.7891 1.6452 1.3241 1.7548 1.2743 

𝐹(𝜌0) [eV] 1.7507 2.0178 7.1154 14.3370 6.3720 18.0540 

𝐹′(𝜌0)[eV/𝜌0] 5.5836 5.6278 10.5384 17.7093 9.8013 21.4135 

𝐹′′(𝜌0)[eV/𝜌02] 12.1477 8.0508 4.8779 4.0523 4.9757 3.8441 

V11  [𝜌0] (-) -0.7399 -0.9088 -1.1676 -1.2810 -1.1561 -1.3153 

W11  [𝜌0] 0.4909 0.4871 0.2601 0.1548 0.2797 0.1280 

W12  [𝜌0] -2.8449 -2.8225 -1.5073 -0.8970 -1.6207 -0.7418 

𝜙1(𝑟0) [eV] -1.7652 -1.8320 -3.1064 -4.9118 -2.9205 -5.8410 

𝜙1
′ (𝑟0)[eV/Å] 0.3409 0.4220 1.0152 1.8718 0.9349 2.3238 

𝜙1
′′(𝑟0)[eV/Å2] -0.8572 -0.8262 -0.6001 -0.2737 -0.6308 -0.1014 

 

Table 4: Predicted values of Г𝟏𝟎𝟎, Г𝟏𝟏𝟎 𝐚𝐧𝐝 Г𝟏𝟏𝟏 for Lithium (Li) in Ergs/cm2 and the experimental average 

value for Li (Wen and Zhang, 2008). 

Model 
Present work 

EXPERIMENT 
Г111 Г100 Г110 AVERAGE 

I 393.4173 600.9522 290.4442 428.2713 

520 

II 426.0098 657.4041 307.3183 463.5774 

III 446.7022 693.2444 317.6405 485.8624 

IV 439.8954 681.4548 313.6928 478.3477 

V 564.2788 896.8931 399.4785 620.2168 

VI 565.5201 899.0431 401.0606 621.8746 

 

Table 5: Predicted values of Г𝟏𝟎𝟎, Г𝟏𝟏𝟎 𝐚𝐧𝐝 Г𝟏𝟏𝟏 for Vanadium (V) in Ergs/cm2 and the experimental average 

value for V (Wen and Zhang, 2008). 

Model 
Present work 

EXPERIMENT 
Г111 Г100 Г110 AVERAGE 

I 2261.6915 3437.4527 1758.8847      2,486.01  

2600 

II 2116.1246 3185.3235 1661.4923      2,320.98  

III 1920.2954 2846.1373 1561.6336      2,109.36  

IV 1854.3474 2731.9120 1531.9344      2,039.40  

V 1930.0727 2863.0722 1565.6818      2,119.61  

VI 1837.1673 2702.1553 1524.3323      2,021.22  

 

 

CONCLUSION 

The GEAM is used to determine the three low-index 

surface energies for Li and V, and the projected findings 

show that a trend of Γ110 < Γ111 < Γ100 was maintained 

for both metals, and their average is within that of 

experimental results. Judging from the results of this 

study, the use of a flexible embedding function with 

enough robust parameters was able to predict results 

comparable to those achieved experimentally for studied 

bcc metals. As a result, the GEAM is viewed as a model 

with potentials to produce good results when applied to 

other metallic qualities. The model's application to other 

fcc and bcc metals is now being evaluated, and the 

results will be released as soon as they are available. 
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