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ABSTRACT 

The quest for simple and practically implementable synchronization control 

functions is the fundamental motive for this research work because most of the 

control functions for synchronization are bulky thereby leading to complexity in 

implementation and high cost. This research paper examines the combination-

combination synchronization of chaotic fractional order systems of identical order 

evolving from different initial conditions via the backstepping nonlinear control 

technique with the aim of reducing the control function’s complexity and cost. So, 

based on the stability theory of fractional order systems,  stable synchronization are 

designed via a backstepping technique using chaotic fractional order Duffing and 

Aneodo as the paradigm. Numerical simulations are presented to confirm the 

feasibility of the analytical technique. The number of control functions has been 

sufficiently reduced compared to previous work hence reduction in control 

functions complexity and reduced cost of implementation. The outcome of this 

work may be useful to give a better understanding of the underlying dynamical 

behaviour among several interacting particles particularly in particle physics. 

INTRODUCTION 

Fractional-order calculus which is a generalized form of 

the integer order calculus has been used to give a better 

description of the integer order calculus.  The 

descriptive abilities of integer-order calculus can be 

traced to the work of Leibniz and Hospital in 1695. The 

integer-order calculus depends only on the local 

characteristics of a function, whereas, fractional order 

calculus possesses the heredity ability to store all 

information of the function in a certain time, which is 

also called memory property (Zhang&Shu, 2022; 

Lazarevi et al, 2014; Li, et al, 2013; Bickel&West, 

1998; Machado&Galhano, 2012; Kilbas et al, 2006.) 

Mathematical models based on fractional order calculus 

can describe the dynamic behaviour of nonlinear 

dynamical systems more accurately than integer order 

calculus (Boulaaras et al, 2023;  Ali et al, 2023; Fadila 

et al, 2023). 

Due to the accurate descriptive power of fractional order 

calculus, it has been applied to models and used to 

analyze several nonlinear fractional order systems (Tang 

et al, 2022; Jan&Boulaaras, 2022; Tang et al, 2022). 

Mathematical modeling of fractional order nonlinear 

dynamical systems theory has found applications in 

various disciplines such as physics, chemistry, 

medicine, mathematics, biology, economics, 

engineering, and psychology (Valentim, 2021; 

Mitkowski et al, 2022; Harris&Garra, 2017). As a result 

of numerous applications of fractional order nonlinear 

dynamical systems, many research papers have been 

published on the dynamical  behavior of coupled 

nonlinear fractional dynamical systems such as 

synchronization, tracking, control, chimera, bistability, 

multistability, and many more (Liu et al, 2021; Liu et al, 

2016; Janarthanan et al, 2021; Hegazi et al, 2013). 

Among these coupled fractional order nonlinear 

dynamical behaviours,  synchronization is the most 

investigated due to its applications in information 

transmission and secure communication theory (Platas-

Garza et al, 2021; Velamore et al, 2021; Alghamdi, 

2021;  Matignon, 1996). There are many  

synchronization types and schemes, such as, complete 

synchronization, projective synchronization, generalized 

synchronization, and combination synchronization. 

Similarly, different types of synchronization just listed  

have been investigated using different methods such as 

linear feedback, active control, backstepping, slide 

mode control, and others (Srivastava et al, 2014; Liu et 
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al, 2014;  He&Chen, 2014; Wang et al, 2012; 

Razminia&Baleanu, 2013). Given several applications 

of synchronization, a lot of synchronization techniques 

have been developed, such as, combination 

synchronization, hybrid combination synchronization, 

combination-combination synchronization, and many 

more as seen (Yadav et al, 2019; Ogunjo et al, 2019; 

Ogunjo et al, 2018; Khan&Nigar, 2020; Yadav et al, 

2018; Singh et al, 2017; Ojo et al, 2022). However, 

most of the designed control functions are very complex 

and not cost-effective, hence, not very suitable for 

practical implementation. As a result, this research 

paper presents combination-combination 

synchronization of identical Duffing and Aneodo 

fractional-order chaotic systems with a minimal number 

of control functions compared to the previously 

designed control function. The optimization of these 

control functions will greatly simplify the complexity of 

the control function and save the cost of practical 

implementation. 

 

Mathematical Model Fractional Order 

Fractional order refers to a mathematical concept that 

involves using non-integer exponents or orders in 

equations. The Grunwald–Letnikov definition of 

fractional order systems, the fractional order 

derivative of order α can be written as (Petras 2011): 

𝐷𝑡
𝑞

𝑓(𝑡) =  lim
ℎ−0

1

ℎ𝛼
∑ (−1)𝑗 (

𝑞
𝑗 ) 𝑓(𝑡 − 𝑗ℎ)∞

𝑗=0   

Where 0 ˂ 𝑞 ˂ 1 and, t is the integration time, h is the 

time step. 

The binomial coefficients can be written in terms of 

the Gamma function as: 

(
𝑞
𝑗 ) =  

𝑟(𝑞+1)

𝑟(𝑗+1)𝑟(𝑞−𝑗+1)
  

The Riemann Liouville definition of fractional 

derivative is given as: 

𝐷𝑡
−𝑞

𝑓(𝑡) =
1

𝑟(𝑛−𝑞)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝑇)

(𝑡−𝑇)∝+1

𝑡

𝑎
𝑑𝑇  

Where n = α. The Caputo fractional derivatives can be 

written as: 

𝐷𝑡
𝑞

𝑓(𝑡) =
1

𝑟(𝑛−𝑞)
∫

𝑓(𝑛)(𝑇)

(𝑡−𝑇)𝑞−𝑛+1 𝑑𝑇
𝑡

𝑎
  

Where, n-1 ˂ 𝑞 ˂ n, T is the integration variable. 

Fractional order calculus has applications in a wide 

range of fields, including physics, engineering, 

Finance, and biology. It is a powerful tool that can help 

researchers to better understand and predict the behavior 

of complex systems. 

 

Combination-combination synchronization for 

identical Duffing oscillators 

The Duffing oscillator, named after George Duffing is a 

nonlinear second-order differential equation used to 

model certain damped and driven oscillators with a 

more complicated potential than in simple harmonic 

motion. The phase portrait of the fractional order 

chaotic Duffing oscillator is shown in Fig. 1.

 

 
Figure 1: Chaotic attractor for fractional-order chaotic Duffing Oscillator for parameters 

𝑎=0.01, 𝛼=-0.5, 𝛽=1, 𝑔=0.095, 𝜃=0.79, 𝑞 = 0.98 

 

Now, for combination-combination synchronization, we 

shall consider two drive fractional order chaotic Duffing 

oscillators  

𝐷𝑞𝑥1   =    𝑥2 

𝐷𝑞𝑥2  =  −𝑏𝑥2  +  𝛼𝑥1 − 𝛽𝑥1
3
+ 𝑔𝑐𝑜𝑠𝜃𝑡        (1) 

𝐷𝑞𝑥3 =   𝑥4     

𝐷𝑞𝑥4 =  −𝑏𝑥4  +  𝛼𝑥3 −   𝛽𝑥3
3
 +  𝑔𝑐𝑜𝑠𝜃𝑡 

where 𝐷𝑞𝑥𝑖 =
𝑑𝑞𝑥𝑖

𝑑𝑡
 for 𝑖 = 1, 2, 3, 4 is the fractional 

order differential of the variable 𝑥 with respect to time. 

The two response chaotic fractional order Duffing 

oscillators are 

𝐷𝑞𝑦1 =    𝑦2  +  𝑈1 

𝐷𝑞𝑦2  =  −𝑏𝑦2  +  𝛼𝑦1 −  𝛽𝑦1
3
 + 𝑔𝑐𝑜𝑠𝜃𝑡 +  𝑈2      (2) 
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𝐷𝑞𝑦3 =   𝑦4 

𝐷𝑞𝑦3 =  −𝑏𝑦4  +  𝛼𝑦3 − 𝛽𝑦3
3
 + 𝑔𝑐𝑜𝑠𝜃𝑡 +  𝑈4 

Similarly,  𝐷𝑞𝑦𝑖 =
𝑑𝑞𝑦𝑖

𝑑𝑡
 for 𝑖 = 1, 2, 3, 4 is the fractional 

order differential of the variable 𝑦 with respect to time 

and 𝑈1, 𝑈2, 𝑈3, 𝑈4 are the controllers to be designed to 

ensure the realization of combination –combination 

synchronization. 

 

The error variables for the drive and response systems 

are described mathematically as follows 

𝑒1 =  𝑦1 +  𝑦3 −   (𝑥1 + 𝑥3)           

  𝑒2 =  𝑦2 + 𝑦4 − (𝑥2 + 𝑥4)        (3) 

Substitution of (1) and (2) into fractional order time 

differential of (3) yields  

𝐷𝑞𝑒1 = 𝑒2 + 𝑈1 +  𝑈3    

𝐷𝑞𝑒2 =−𝑏(𝑦2 + 𝑦4)  +  𝑏(𝑥2 + 𝑥4) +  𝛼(𝑦1 + 𝑦3) −
 𝛼 (𝑥1 +  𝑥3) +  𝐹1 + 𝑈2 +  𝑈4 

         =−𝑏𝑒2 +  𝛼𝑒1  +   𝐹1  +  𝑈2 +  𝑈4   (4) 

where  𝐹1 = −𝛽𝑦1
3 − 𝛽𝑦3

3 + 𝛽𝑥1
3 +  𝛽𝑥3

3
 

So, the error dynamics can be summarized as follows 

𝐷𝑞𝑒1  =   𝑒2  +  𝑈2 +  𝑈4 

𝐷𝑞𝑒2  = −𝑏𝑒2 +  𝑒1  +  𝐹1  +  𝑈2 +  𝑈4  (5) 

Let 𝑒1  =  𝑞1, then, its fractional order time derivative is 

𝐷𝛼𝑒1 = 𝐷𝛼𝑞1. Using Lyapunov function   𝑉1 =
1

2
𝑞1

2, 

its fractional order time derivative is given as  

𝐷𝑞𝑉1=  𝑞1  (𝑒2 +  𝑈1 + 𝑈3)   (6) 

If we write   𝑒2 = 𝛼 (𝑞1 ) as a virtual controller and 

𝑈1 = 𝑈3 = 0, 

then 𝐷𝑞𝑉1  = 𝑞1 (𝛼(𝑞1 ) +  𝑈1 +  𝑈3) which  𝛼(𝑞1 ) =
− 𝑞1 in order for the equation to be negative definite. 

Then, we have 

𝐷𝑞𝑞1  = 𝑞1 (−𝑞1 ) =   −𝑘𝑞
2
1

<   0    (7) 

Which is negative definite.  

The error between  

e2 and α (1(q1 ) can be denoted by  q2 = e2 − α1(q1). 

Thus, we have the following (q1, q2) subsystems 

𝐷𝑞𝑞2   =  𝑞2 −  𝑘𝑞
2
1

 

𝐷𝑞𝑞2 =  −𝑏(𝑞2 −  𝑘𝑞1 ) +  𝛼𝑞1  + 𝐹1  +  𝑈2 +  𝑈4 

      (8) 

To stabilize systems (13), we choose a Lyapunov 

function, 𝑉2 =  𝑉1 +   
1

2
𝑞2

2  whose fractional order time 

derivative is  

𝐷𝑞𝑉2  =   𝐷𝑞𝑉1 +  𝑞2  (𝐷𝑞𝑞2 )   

          =−𝑘𝑞1
2 +  𝑞2   (−𝑏𝑞2 + 𝑏𝑘𝑞1 +  𝛼 𝑞1  +   𝐹1  +

 𝑈2 +  𝑈4 )              (9) 

If  𝑈2 +  𝑈4 = −𝑏𝑘𝑞1 − 𝛼 𝑞1−𝑞2(𝑘 − 𝑏) − 𝐹1. 

Therefore, 𝐷𝛼𝑉2 = −𝑘𝑞1
2 − 𝑘𝑞2

2  < 0 with 𝑘 > 0. The 

errors are asymptotically stable hence, stable 

combination-combination synchronization is 

guaranteed. For simplicity, 𝑈2 = 𝑈4 = 𝑈, then, 

  𝑈 =  
1

2
 [−𝑏𝑘𝑞1 − 𝛼 𝑞1−𝑞2(𝑘 − 𝑏) −  𝐹1] (10)

 

 
Figure 2: The dynamics of the state variables of the fractional order 

chaotic systems when the controllers are activated for 50 < 𝑡 < 100 
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Figure 3: The dynamics of the error variables of the fractional order 

chaotic systems when the controllers are activated for 50 < 𝑡 < 100  

  

Description of Combination synchronization of the 

Aneodo system 

The mathematical model of the Aneodo system is 

described by the differential equation below 
𝑑𝑞𝑝1

𝑑𝑡𝑞
= 𝑝2 

𝑑𝑞𝑝2

𝑑𝑡𝑞
  =   𝑝3 

𝑑𝑞𝑝3

𝑑𝑡𝑞 = −𝛽1𝑝1 − 𝛽2𝑝2 −  𝛽3𝑝3  +  𝛽4𝑝1
3
     (15) 

The phase portrait of the chaotic attractor of the Aneodo 

system is depicted in Fig. 4. 

 

 
Figure 4: The phase portrait of chaotic attractor for fractional-order 

Aneodo system for parameters  𝛽1 = −5.5, 𝛽2 = 3.5, 𝛽3 =
1.0 𝛽4 = 1.0, 𝑏 = 0.15, 𝛼 = 0.90. 

 

Combination synchronization shall be demonstrated by 

using four Aneodo systems starting from different initial 

conditions. The four Aneodo systems are represented by 

the following equations.   
𝑑𝑞𝑥1

𝑑𝑡𝑞
= 𝑥2 

𝑑𝑞𝑥2

𝑑𝑡𝑞
  =   𝑥3 

𝑑𝑞𝑥3

𝑑𝑡𝑞 = −𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑥3  + 𝛽4𝑥1
3
     (16) 

and 

𝑑𝑞𝑦1

𝑑𝑡𝑞
= 𝑦2 

𝑑𝑞𝑦2

𝑑𝑡𝑞
= 𝑦3 

𝑑𝑞𝑦3

𝑑𝑡𝑞 = −𝛽1𝑦1 −  𝛽2𝑦2 − 𝛽3𝑦3 + 𝛽4𝑦1
3
     (17) 

then the response systems  
𝑑𝑞𝑧1

𝑑𝑡𝑞
  =   𝑧2 

𝑑𝑞𝑧2

𝑑𝑡𝑞
  =   𝑧3 



Combination-combination synchroni…  Adeniji et al. NJP 

61 

         NIGERIAN JOURNAL OF PHYSICS   NJP VOLUME 32(4)          www.njp.nipngn.org 

𝑑𝑞𝑧3

𝑑𝑡𝑞   =   −𝛽1𝑧1 −  𝛽2𝑧2 −  𝛽3𝑧3  +  𝛽4𝑧1
3  +  𝑈1    

      (18) 

and 
𝑑𝑞𝑤1

𝑑𝑡𝑞
= 𝑤2 

𝑑𝑞𝑤2

𝑑𝑡𝑞
  =   𝑤3 

𝑑𝑞𝑤3

𝑑𝑡𝑞 = −𝛽1𝑤1 −  𝛽2𝑤2 − 𝛽3𝑤3 + 𝛽4𝑤1
3 + 𝑈2    

      (19) 

The error systems of (16) – (19) are 

𝑒1 = (𝑧1 + 𝑤1)  − (𝑥1 + 𝑦1) 

𝑒2 = (𝑧2 +  𝑤2) − (𝑥2 + 𝑦2) 

𝑒3 = (𝑧3 +  𝑤3) − (𝑥3 + 𝑦3)    (20) 

Substitution of Equation (16) - (19) to the time 

derivative of Equation (20) yields 
𝑑𝑞𝑒1

𝑑𝑡𝑞  = 𝑒2        (21) 

𝑑𝑞𝑒2

𝑑𝑡𝑞     = 𝑒3           (22)  

 
𝑑𝑞𝑒3 

𝑑𝑡𝑞 = −𝛽1(𝑧1 + 𝑤1) +  𝛽1(𝑥1 + 𝑦1) − 𝛽2(𝑧2  +

 𝑤2) +  𝛽2(𝑥2 + 𝑦2) − 𝛽3(𝑤3  +  𝑧3) +   𝛽3(𝑧3 +

 𝑦3) +  𝛽4𝑤1
3  +   𝛽4𝑧1

2 −   𝛽4𝑥1
3  −   𝛽4𝑦1

3  +  𝑈1 +
𝑈2 

           = −𝛽1𝑒1 −  𝛽2𝑒2−  𝛽3𝑒2  +  𝐹1+  𝑈1 + 𝑈2      

     (23) 

where  

𝐹1 = 𝛽4𝑤1
3 +  𝛽4𝑧1

2 −  𝛽4𝑥1
3 − 𝛽4𝑦1

3
.    

 Let  𝑒1 =  𝑧1 , then  
𝑑𝑞𝑒1

𝑑𝑡𝑞  =
𝑑𝑞𝑧1

𝑑𝑡𝑞 = 𝑒2   where (𝑧1) is 

regarded as virtual control input. To stabilize above 

system, we choose the Lyaponov function 

𝑉1 =
𝑧1 

2

2
        (24) 

whose fractional order derivative is  
𝑑𝑞𝑉1

𝑑𝑡𝑞     =  𝑧1(𝑧1) = 𝑧1  𝛼1 (𝑧1)      (25) 

  𝐼𝑓  𝛼1 (𝑧1) 𝑖𝑠 −𝑧1  𝑡ℎ𝑒𝑛  
𝑑𝑞𝑈

𝑑𝑡𝑞   =   𝑧1 
2 ≤  0. Then, 

Equation (25) is asymptotically stable since the virtual 

controller 𝛼1 is estimative, the error difference between 

them is  

𝑧2  =  𝑒2 −  𝛼1  (𝑧1)   

so that 

𝑧2  =   𝑒2 +  𝑧1          (26) 

Then, we have the following subsystems (𝑧1𝑧2) 

 
 𝑑𝑞𝑧1

𝑑𝑡𝑞 = 𝑧2 + 𝑧1  

𝑑𝑞𝑧2

𝑑𝑡𝑞
= 𝑒3 + 𝑒2 = 𝑒3 + (𝑧2 − 𝑧1) 

𝑑𝑞𝑧2

𝑑𝑡𝑞 = 𝑒3 + 𝑧2 − 𝑧1       (27) 

Where  

𝑒3 =  𝛼2 (𝑧1,𝑧2) is regarded as virtual controller.  We 

shall stabilize the system (27)  using Lyapunov function 

𝑉2 = 𝑉1 +  
𝑧2

2

2
        (28) 

Whose derivative is 
𝑑𝑞𝑉2

𝑑𝑡𝑞
=  

𝑑𝑞𝑉1 

𝑑𝑡𝑞
 + 𝑧2 (

𝑑𝑞𝑧2 

𝑑𝑡𝑞
) 

          = − 𝑧1
2 +  𝑧2(𝛼3 + 𝑧2 −  𝑧1)     (29) 

If 𝛼3 = 𝑧1 −  2𝑧2
2 then ,

𝑑𝑞𝑉2 

𝑑𝑡𝑞 = −𝑧2
2 − 𝑧2

2   ≤   0 

then, the subsystem (27) asymptotically stable. 

Similarly, the error variable between  𝛼2  and 𝑒2  as 

𝑧3 = 𝑒3 − 𝛼3   

that is  𝑒3 = 𝑧3 + 𝛼3  . Then we can denote the 

following (𝑧1, 𝑧2 , 𝑧3 )sub systems as 
𝑑𝑞𝑧1

𝑑𝑡𝑞
= 𝑧2 + 𝑧1  

𝑑𝑞𝑧2

𝑑𝑡𝑞  = 𝑧3 +  𝑧1 −  2𝑧2 +  𝑧2 −  𝑧1   

𝑑𝑞𝑧3

𝑑𝑡𝑞 =  −𝛽1𝑧1 −  𝛽2(𝑧2 − 𝑧1) − 𝛽3(𝑧3 + 𝑧1 −  2𝑧2) +

 𝐹1 + 𝑈1  +  𝑈2                           (30)  

To stabilize the (𝑧1, 𝑧2,  𝑧3),  we choose the Lyapunov 

function of  𝑉3   as  

𝑉3 =  𝑉2 +
𝑍3

2

2
   whose derivative is 

 
𝑑𝑞𝑣3

𝑑𝑡𝑞  =  
𝑑𝑣2

𝑑𝑡𝑞  + 𝑧3 +
𝑑𝑧3

𝑑𝑡𝑞           (31) 

By appropriate substitutions 

 
𝑑𝑞𝑣3

𝑑𝑡𝑞 =   −𝑧1
2 −  𝑧2

2 − 𝛽3
2  ≤  0   𝑖𝑓  

𝑈1  +  𝑈2 =  𝛽1𝑧1  + 𝛽2(𝑧2 −  𝑧1) +  𝛽3(𝑧1 −  2𝑧2) −
 𝐹1 −  𝑘𝑧3   

For simplicity, let 𝑈1 =  𝑈2 = 𝑈  

then, 𝑈 =
1

2
(𝛽1𝑧1  +  𝛽2(𝑧2 −  𝑧1) +  𝛽3(𝑧1 −  2𝑧2) −

 𝐹1 −  𝑘𝑧3 )     (32)
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Figure 5: The dynamics of the state variables of the fractional order chaotic 

Aneodo when the controllers are activated for 10 < 𝑡 < 20 

 

 
Figure 6: The dynamics of the error variables of the fractional order chaotic Aneodo 

when the controllers are activated for 10 < 𝑡 < 20 

 

RESULTS AND DISCUSSION 

The equations (1), (2), and (10) are solved numerically 

through the Runge-Kutta algorithm built-in MATLAB 

in order to authenticate the effectiveness of the derived 

controller in equation (10). The parameters values 

𝑎=0.01, 𝑎=-0.5, 𝛽=1, 𝑔=0.095, 𝜃=0.79, 𝛼 = 0.98 with 

the initial conditions (0.01, 0.01, 1, 1, 0.5, 2, 0.1, 0.2) in 

this numerical simulation. The result shown in Fig. 2 
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shows that the state variables moved in different 

directions before the controllers were applied. 

Immediately, the controllers are applied between 50 <
𝑡 < 100, and the state variables moved with an identical 

trajectory. The achievement of the trajectory shows 

clear evidence of synchronization. Similarly, another 

piece of evidence of synchronization is depicted in Fig. 

3. Where the error variables are reduced to zero when 

the controllers are applied between 50 < 𝑡 < 100. This 

also confirms the synchronization of the systems. 

Similarly, Numerical simulation was carried out by 

solving equations (16)-(19) with control defined in 

equation (32). The initial conditions of the fractional 

order Aneodo system are chosen as (0.1 0.4 1 1 2 2 2 

0.2 4 3.2 0.6 0.8) with the following parameters  𝛽1 =
−5.5, 𝛽2 = 3.5, 𝛽3 = 1.0 𝛽4 = 1.0, 𝑏 = 0.15, 𝛼 = 0.90 

in the chaotic region to ensure chaotic dynamics. The 

simulation result in Fig.5. shows that the state variable 

of the Aneodo systems moved with trajectories before 

the control functions were applied. Immediately the 

control functions were activated for 10 < 𝑡 < 20, the 

state variables begin to move with common trajectory. 

The identical dynamics achieved by the state variables 

after the application of the control functions show clear 

evidence of synchronization. Moreover, Fig.6. shows 

the dynamics of the error systems before and after the 

activation of the control functions for 10 < 𝑡 < 20. As 

shown in Fig.6, the error systems moved chaotically 

with time when the control functions were deactivated 

for  0 < 𝑡 < 10.  When the control functions were 

activated for 10 < 𝑡 < 20 the error systems became 

zero which shows that the system synchronized. The 

implication of this is that after the application of the 

control functions the difference in their trajectories is 

zero.  This indicates that combination-combination 

synchronization has been achieved with a minimal 

number of control functions.  

 

CONCLUSION 

This research shows the possibilities of achieving 

synchronization control in a combination-combination 

synchronization scheme through a minimal number of 

control functions. These optimized synchronization 

control functions give a bright hope for practical 

implementation with the advantages of simplicity and 

cost-effectiveness. Numerical simulations presented 

confirm the effectiveness of the analytically derived 

control functions. In particle physics, the obtained 

results could be helpful in giving a better understanding 

and insight into different synchronization patterns and 

interactions among different particles.  Meanwhile, 

research is still going on to obtain more robust and 

simplified control functions with better cost-

effectiveness.  
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