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ABSTRACT 

Synchronization control of coupled dynamical systems with bounded control 

functions in spite of advantages in the optimization of control functions has not 

been adequately explored. In order to further demonstrate the advantage of this 

control technique, this paper presents the effect of sinusoidal coupling on two 

periodically modulated chaotic Josephson junctions evolving from different initial 

conditions. A sufficient analytical criterion for the determination of the coupling 

threshold that leads to common dynamical behaviour called synchronization was 

derived. The derived analytical criterion is applied to sinusoidally coupled 

periodically modulated Josephson junctions within two dynamical regimes 𝐺1and 

𝐺2 to illustrate the effectiveness of the analytical criterion. Numerical simulations of 

the analytical result show the achievement of stable synchronization. The result can 

be applied to determine the level and the strength of interaction between several 

particles or objects interacting on different topological configurations that can result 

in different dynamical behaviours. 

INTRODUCTION 

The studies of dynamical systems have given a better 

insight into the understanding of behavioural patterns of 

several natural and artificial systems such as biological, 

physical, chemical and socio-economical systems (Rita 

Akter 2019). Several phenomena such as 

synchronization, multistability, basin boundary crises, 

chimeras, and, different pattern formations have been 

discovered from interaction of two or more dynamical 

systems (Wen & Lu 2021). Synchronization is the most 

prominent among these dynamical behaviours exhibited 

by coupled dynamical systems and this is due to its 

applications in information communication, biological 

and physical systems (Ojo, Olusola & Njah 2013). 

Several types of synchronization such as complete 

synchronization, measure synchronization, anti-

synchronization, generalized synchronization, projective 

synchronization, and many others have been 

investigated (Ayotunde, Kayode, Uchechukwu, And 

Njah 2014). Also, many nonlinear and linear 

synchronization methods have been developed in search 

of the most effective synchronization method. Some of 

the developed methods are linear coupling, cyclic 

coupling, backstepping, active control, optimal control, 

finite time and others (Jianping, Xiaofeng & Shuhui 

2007) in the reference therein. 

Meanwhile, most of the developed nonlinear control 

methods are very effective for synchronization of 

identical and non-identical dynamical systems. 

However, it is difficult to practically implement the 

control functions based nonlinear control methods: a 

result of many nonlinear terms involved in the control 

functions. In the case of linear feedback, though easy to 

implement practically but most of the designed linear 

feedback controllers are static in nature. These static 

controllers do not depict the true nature of the real 

world. Since dynamical problem can be best solved by 

dynamical solution, hence, dynamic coupling with 

bounded function is preferred. This research work is 

inspire based on the importance of bounded dynamic 

coupling and the dearth of research papers in this 

direction. The aim of this paper is to investigate 

synchronization in sinusoidally periodically modulated 

Josephson junctions  

Brief description of periodically modulated 

Josephson junction 

The equation for the periodically modulated Josephson 

junction described by Wu and Li (2007) is given by 
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second order non-autonomous second order differential 

equation.  

𝜙̈ = −[1 + 𝜉 cos(Ω𝑡 + Θ)] sin 𝜙 + 𝜌0 − 𝛿𝜙̇ +
𝛾 cos 𝜔𝑡      (1) 

where 𝜙 is the phase difference between quantum 

mechanical wave functions of the two separated 

superconductors of the junction, 𝜉 cos(Ω𝑡 + Θ) is the 

modulated terms with amplitude 𝜉, phase angle Θ,and 

frequency Ω, 𝜌0 is the DC bias, 𝛿 is the damping 

parameter, and 𝛾 and 𝜔 are the amplitude and frequency 

of the RF-current, respectively. The sequence of 

periods-doubling route to chaos, as 𝜉 is progressively 

increased, was reported by Ojo, Njah & Adebayo 

(2011). Fig. 1 shows a chaotic attractor for ξ = 2.462 

arising from tori-doubling bifurcation. 

Equation (1) can be represented as  

𝑥1̇ = 𝑥2 

𝑥̇2 = −[1 + 𝜉 cos(Ω𝑡 + Θ)] sin 𝑥1 + 𝜌0 − 𝛿𝑥2 +
𝛾 cos(𝜔𝑡)      (2) 

where 𝜙̈ = 𝑥̇1 and 𝜙̇ = 𝑥1 

 
Figure 1: The phase space portrait of the chaotic attractor of the 

periodical excited Josephson junction with parameters Ω, Θ =
0.1, 𝜌0 = 0.1, 𝛿 = 0.1, 𝛾 = 2, 𝜔 = 3, 𝜉 = 2.462 

 

Using vector notation 𝑥 = (𝑥1, 𝑥2)𝑇𝜖 𝑹2 then, Equation (2) becomes 

𝑋̇ = 𝐴𝑋 + 𝐵(𝑥) + 𝐶(𝑡)     (3) 

where  

𝐴 = (
0 1
0 −𝛿

), 𝐵(𝑥) = (
0

− sin 𝑥1 − 𝜉 sin 𝑥1 cos(Ω𝑡 + Θ)
)  𝐶(𝑡) = (

0
𝜌0 + 𝛾 cos(𝜔𝑡))  

 

(
−𝑘1𝑆1(𝑡) 𝑞(𝑡)

1 −(𝛿 + 𝑘2𝑆2(𝑡))
) (

𝑃1 0
0 𝑃2

) (
0

𝜌0 + 𝛾 cos(𝜔𝑡)),   

(
−𝑃1𝑘1𝑆1(𝑡) + 0 0 + −𝑃2𝑞(𝑡)

𝑃1 + 0 −𝑃2(𝛿 + 𝑘2𝑆2(𝑡))
) 

𝑃1𝑆1(𝑡)𝑘1 > 0, 4𝑃1𝑃2 

 𝑃1
2√2

3𝜋
. 

𝑘1 > 0 

 

Design of synchronization threshold for the 

sinusoidal coupled periodically modulated Josephson 

junctions 

A drive-response synchronization scheme for two 

identical Periodically Modulated Josephson Junction 

coupled via a sinusoidal state error feedback controller 

is constructed as follows: 

Drive System: 

 𝐴𝑥 + 𝐵(𝑥) + 𝐶(𝑡) = 𝑥̇        (4)  

Response system: 

 𝐴𝑦 + 𝐵(𝑦) + 𝐶(𝑡) + 𝑢(𝑡) = 𝑦̇    (5) 

Controller 

: 𝑢(𝑡) =   [𝑘1𝑆𝑖𝑛(𝑥1 − 𝑦1), 𝑘2𝑆𝑖𝑛(𝑥2 − 𝑦2)]𝑇        (6) 

where 𝑦 = (𝑦1, 𝑦2)𝑇, T means transpose, and 𝑘1 and 𝑘2 

are coefficients of coupling variables 

Defining error variable 

𝑒 = 𝑥 − 𝑦 or (𝑒1, 𝑒2) = (𝑥1 − 𝑦1, 𝑥2 − 𝑦2), we can 

obtain an error dynamical system 



Synchronization Metric for…  Ojo et al. NJP 

135 

         NIGERIAN JOURNAL OF PHYSICS   NJP VOLUME 32(3)          www.njp.nipngn.org 

𝑒̇ = 𝐴(𝑥 − 𝑦) − 𝑢(𝑡) + 𝐵(𝑥) − 𝐵(𝑦) 

𝑒̇ = (𝐴 − 𝑘𝑡) + 𝑁(𝑡)   (7) 
With  

𝑘(𝑡) = (
𝑘1𝑆1(𝑡) 0

0 𝑘2𝑆2(𝑡)
),  

 𝑆1(𝑡) =
𝑆𝑖𝑛(𝑥1−𝑦1)

𝑥1−𝑦1
, 𝑆2(𝑡) =

𝑆𝑖𝑛(𝑥2−𝑦2)

𝑥2−𝑦2
 

𝑁(𝑡) = (
0 0

𝑞(𝑡) 0
) 𝑞(𝑡) = 

−(𝑆𝑖𝑛 𝑥1−𝑆𝑖𝑛 𝑦1)−𝜉 cos(Ω𝑡+Θ)(𝑆𝑖𝑛 𝑥1−𝑆𝑖𝑛 𝑦1)

𝑥1−𝑦1
   (8) 

We aim at choosing suitable coupling coefficients 𝑘1, 

𝑘2 such that 𝑥(𝑡) and 𝑦(𝑡) satisfies the condition  

lim
𝑡→∞

‖𝑥(𝑡) − 𝑦(𝑡)‖ = lim
𝑡→∞

‖𝑒(𝑡)‖ = 0   (9) 

Such the error between the drive and the response 

systems asymptotically tends to zero after the activation 

of the coupling variables at appropriate coupling 

strength. Using stability theory, synchronization of 

chaos in systems Equation (4) and Equation (5) in line 

with Equation (9) is equivalent to the asymptotic 

stability of the error system (7) at the origin 𝑒 = 0.   

Note that ‖𝑥(𝑡) − 𝑦(𝑡)‖ = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2   

denotes the Euclidean norm of vectors. 

Taking a quadratic Lyapunov function 𝑉(𝑒) = 𝑒𝑇𝑃𝑒 

with 𝑃  a symmetric positive definite. Constant matrix, 

where the derivative of 𝑉(𝑒)  with respect to time along 

the trajectory of system (7) is 𝑉̇(𝑒) = 𝑒̇𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑒̇  

𝑉̇(𝑒) = 𝑒𝑇𝑃(𝐴 − 𝑘(𝑡) + 𝑁(𝑡)) + (𝐴 − 𝑘(𝑡) +

𝑁(𝑡))
𝑇

𝑃]𝑒       (10) 

By the Lyapunov stability theorem for linear time- 

varying system, a sufficient condition that the error 

system (7) in asymptotically stable at the origin is given 

by 

𝑄(𝑡) = 𝑃(𝐴 − 𝑘(𝑡) + 𝑁(𝑡)) + (𝐴 − 𝑘(𝑡) + 𝑁(𝑡))
𝑇

𝑃    

     (11)  

This is negative definite and denoted by 

𝑄(𝑡) < 0       (12) 
Now  

𝐴 − 𝑘(𝑡) + 𝑁(𝑡) = (
0 1
0 −𝛿

) − (
𝑘1𝑆1(𝑡) 0

0 𝑘2𝑆2(𝑡)
)

+ (
0 0

𝑞(𝑡) 0
) 

𝐴 − 𝑘(𝑡) + 𝑁(𝑡) = (
−𝑘1𝑆1(𝑡) 1

𝑞(𝑡) −(𝛿 + 𝑘2𝑆2(𝑡))
) 

For simplicity, we choose 

𝑃 = (
𝑃1 0
0 𝑃2

) 

Therefore, 

𝑄(𝑡) = (
−2𝑃1𝑘1𝑆1(𝑡) 𝑃1 + 𝑃2𝑞(𝑡)

𝑃1 + 𝑃2𝑞(𝑡) −2𝑃2(𝛿 + 𝑘2𝑆2(𝑡))
)    

     (13) 
By Sylvester’s Criterion, 𝑄(𝑡) < 0 is equivalent to the 

following inequalities: 

𝑃1𝑘1𝑆1(𝑡) > 0, 4𝑃1𝑃2𝑘1𝑆1(𝑡)(𝛿 + 𝑘2𝑆2(𝑡)) >

(𝑃1 + 𝑃2𝑞(𝑡))
2
    (14) 

Note that 𝑆1(𝑡) > 0 and 𝑆2(𝑡) > 0 if (𝑥1,𝑥2) and 

(𝑦1, 𝑦2) are limited in the region 

𝑅{|𝑥1, − 𝑦1,| < 𝜋, |𝑥2, − 𝑦2,| < 𝜋}, So, error system (7) 

is asymptotically stable at the origin in the region 𝑅.if 

the inequality (14) is satisfied. 

 
Determination of coupling threshold for 

bidirectional coupling 

 In this section, algebraic criterion for bidirectional 

coupled Josephson junctions with coupling parameters 

from two different bounded dynamical regimes 𝐺1 and 

𝐺2 

Case 1: Determination of coupling threshold using the 

algebraic criteria 𝑮𝟏  

In order to get an easily verified algebraic condition, we 

further restrict the variables in the subregion 

𝐺1 = {|𝑥1, − 𝑦1,| ≤
3𝜋

4
, |𝑥2, − 𝑦2,| ≤

3𝜋

4
} then, we have 

2√2

3𝜋
≤ 𝑆1(𝑡) ≤ 1 and 

2√2

3𝜋
≤ 𝑆2(𝑡) ≤ 1 

Now a simple algebraic sufficient criterion for 

synchronizing the system (4) and (5) can be obtained 

from (14) as 

𝑘1, > 0       (15a) 

4𝑃1𝑃2𝑘1
2√2

3𝜋
(𝑘2

2√2

3𝜋
+ 𝛿) > (𝑃1 + 𝑃2𝑞(𝑡))

2
  

𝑘2 >
9𝜋2(𝑃1+𝑃2(1+|𝜉|))

2

32𝑃1𝑃2𝑘1
−

𝛿3𝜋

2√2
       (15b) 

Deducing from lemma (Wu, Kai & Wang 2006), the 

inequality |𝑞(𝑡)| < 1 + |𝜉|.  
The synchronization criterion obtained here only 

renders a sufficient but not necessary condition. It is 

natural to expect that a sharper criterion can provide 

more choices of the coupling coefficients. To this end, 

we can minimize the lower bound of 𝑘2 in inequality 

(15b) by choosing 

𝑃 = 𝑑𝑖𝑎𝑔{(1 + |𝜉|)𝑃2, 𝑃2} 

Now substituting 𝑃 = 𝑑𝑖𝑎𝑔{(1 + |𝜉|)𝑃2, 𝑃2} in (15) we 

have   

𝑘1 > 0        (16a) 

𝑘2 >
9𝜋2[(1 + |𝜉|)𝑃2 + 𝑃2(1 + |𝜉|)]2

32(1 + |𝜉|)𝑃2
2𝑘1

−
3𝜋𝛿

2√2
 

𝑘2 >
9𝜋2[2𝑃2(1 + |𝜉|)]2

32(1 + |𝜉|)𝑃2
2𝑘1

−
3𝜋𝛿

2√2
 

𝑘2 >
9𝜋2(1+|𝜉|)

8𝑘1
−

3𝜋𝛿

2√2
             (16b) 

 

Case 2: Determination of coupling threshold using the 

algebraic criteria 𝑮𝟐  

𝐺2 = {|𝑥1, − 𝑦1,| ≤
𝜋

2
, |𝑥2, − 𝑦2,| ≤

3𝜋

4
}. Then we have 

2

𝜋
≤ 𝑆1(𝑡) ≤ 1 and 

2√2

3𝜋
≤ 𝑆2(𝑡) ≤ 1 

Using 𝐺1in Equation (14) yields 
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𝑃1𝑘1 (
2

𝜋
) > 0 

⟹ 𝑘1, > 0     (17a) 

 𝑘2 >
3𝜋2𝛽

16√2𝑃1𝑃2𝑘1
−

3𝜋𝛿

2√2
          (𝛽 = (𝑃1 + 𝑃2(1 +

|𝜉|))
2

)         (17b) 

To obtain a sharper criterion, we minimize the lower 

bound of 𝑘2 in inequality (17b) by choosing  

𝑃 = 𝑑𝑖𝑎𝑔{(1 + |𝜉|)𝑃2, 𝑃2} 

Now substituting 𝑃 = 𝑑𝑖𝑎𝑔{(1 + |𝜉|)𝑃2, 𝑃2} in (22), we 

obtain 

𝑘2 >
3𝜋2(1+|𝜉|)

4√2𝑘1
−

3𝜋𝛿

2√2
           (18) 

Please note that numerical simulation result is only 

presented for case 2 since the result are similar. Now the 

numerical solution Equations (4) and (5) with activation 

of controllers defined in Equation (6) numerically using 

condition in equation (17a) and (18) for 100 ≤ 𝑡 ≤ 200 

using inbuilt ODE45 solver in MATLAB. The results 

obtained is as shown in Figure (2) and Figure (3). 

 

 
Figure 2: The dynamics of the state variables of the drive and 

response variable when the control functions are activated for 

100 ≤ 𝑡 ≤ 200  
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Figure 3: The dynamics of the error variables when the control functions are activated at 

100 ≤ 𝑡 ≤ 200 where  𝑒1 = 𝑥1 − 𝑦1, 𝑒2 = 𝑥2 − 𝑦2 and 𝑒 = √𝑒1 + 𝑒2 

 
It is observed that before the application of the control 

functions, the dynamics of the state variables moved 

along different trajectories as result of differences in 

their initial conditions. In order to verify stable 

synchronization, the two system must have a common 

trajectory as a result control functions are activated for 

100 ≤ 𝑡 ≤ 200. It is notice from the Figure 2 that the 

systems variables achieved common trajectory or 

identical trajectory as from 𝑡 ≥ 100. The achievement 

of this common trajectory shows that stable 

synchronization has been realized. Similarly, from 

Figure 3, the dynamics of the error variable shows that 

the error dynamics moved chaotically with time before 

the activation of the control functions and immediately 

the control function are activate for 100 ≤ 𝑡 ≤ 200 the 

error dynamic reduced and stabilizes at zero. This again 

confirms the realization of stable synchronization.  

 

Determination of coupling threshold for 

unidirectional coupling 

In this section, algebraic criterion for unidirectional 

coupled Josephson junctions with coupling parameters 

from two different bounded dynamical regimes 𝐺1 and 

𝐺2 

 

Case 1: Determination of coupling threshold using the 

algebraic criteria 𝑮𝟏  

𝐺1 = {|𝑥1, − 𝑦1,| ≤
3𝜋

4
, |𝑥2, − 𝑦2,| ≤

3𝜋

4
} then we have 

2√2

3𝜋
≤ 𝑆1(𝑡) ≤ 1 and 

2√2

3𝜋
≤ 𝑆2(𝑡) ≤ 1 

In the case of unidirectional coupling the controller is 

chosen as  𝑢(𝑡) = (𝑘1 sin(𝑥1 − 𝑦1) , 0)𝑇, the sufficient 

criteria can then be obtained by substituting 𝐺1 into the 

second inequality in Equation (14) with 𝑘2 = 0 gives 

4𝑃1𝑃2𝑘1 (
2√2

3𝜋
) 𝛿 > (𝑃1 + 𝑃2𝑞(𝑡))

2
 

𝑘1 >
3𝜋(𝑃1+𝑃2(1+|𝜉|))

2

8√2 𝑃1𝑃2𝛿
                 (19) 

In order to obtain sharper synchronization criteria  𝑃 =
𝑑𝑖𝑎𝑔{(1 + |𝜉|)𝑃2, 𝑃2} in (17) yields 

𝑘1 >
3𝜋(1+|𝜉|)

2√2 𝛿
    (20)  

 

Case 2: Determination of coupling threshold using the 

algebraic criteria 𝑮𝟐  

 𝐺2 = {|𝑥1, − 𝑦1,| ≤
𝜋

2
, |𝑥2, − 𝑦2,| ≤

3𝜋

4
}. Then we have 

2

𝜋
≤ 𝑆1(𝑡) ≤ 1 and 

2√2

3𝜋
≤ 𝑆2(𝑡) ≤ 1 

Similarly, in the case of unidirectional coupling the 

controller is chosen as  𝑢(𝑡) = (𝑘1 sin(𝑥1 − 𝑦1) , 0)𝑇, 
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the sufficient criteria can then be obtained by 

substituting 𝐺2 into the second inequality in Equation 

(14) with 𝑘2 = 0 gives 

4𝑃1 𝑃2 (
2

𝜋
) 𝛿𝑘1 > (𝑃1 +  𝑃2𝑞(𝑡))

2
 

𝑘1 >
𝜋(𝑃1+ 𝑃2(1+|𝜉|))

2

8𝑃1 𝑃2𝛿
              (21) 

Now using 𝑃 = 𝑑𝑖𝑎𝑔{(1 + |𝜉|)𝑃2, 𝑃2} in (24), we 

obtain 

𝑘1 >
𝜋

2 𝛿
(1 + |𝜉|)        (22) 

 

Please note that numerical simulation result is only 

presented for case 2 since the result are similar. Now the 

numerical solution Equations (4) and (5) with activation 

of controllers defined in Equation (6) numerically using 

condition in equation (21) and (22) for 100 ≤ 𝑡 ≤ 200 

using inbuilt ODE45 solver in MATLAB. The results 

obtained is as shown in Figure (4) and Figure (5).

 

 
Figure 4: The dynamics of the state variables of the drive and response 

variable when the control functions are activated for 100 ≤ 𝑡 ≤ 200 

 

 
Figure 5: The dynamics of the error variables when the control functions are 

activated for 100 ≤ 𝑡 ≤ 200 where  𝑒1 = 𝑥1 − 𝑦1, 𝑒2 = 𝑥2 − 𝑦2 and 𝑒 =

√𝑒1 + 𝑒2 
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The dynamics of the variables of two identical 

periodically modulated Josephson junctions evolving 

from different initial conditions is numerically 

simulated with control function within the bound region 

𝐺2 to confirm the feasibility of the analytical result. In 

the simulation techniques, the bounded control function 

was applies for100 ≤ 𝑡 ≤ 200 to observe the effect of 

the control function on the systems. The numerical 

simulations result show that the dynamics of the drive 

and response variables followed different trajectories 

before the application of control function. Immediate 

the control function was activated, the drive and the 

response systems achieved identical trajectory which 

indicate synchronization s shown in Figure 4. Similarly, 

in Figure 5, it seen that the error dynamics moved 

chaotically with the time before the activation of control 

function. So, when control function was activated for 

100 ≤ 𝑡 ≤ 200 t, the error dynamics reduce to zero 

which again indicate stable synchronization. 

 

CONCLUSION 

This research paper examines the synchronization of 

sinusoidally coupled periodically modulated Josephson 

junctions using Sylvester criterion. It is observed that 

irrespective of the dynamical region of the bounded 

coupling parameter, synchronization is still achievable. 

The sinusoidal coupling technique applied in different 

dynamical regimes give different ways to optimize our 

coupling threshold choices. Numerical Simulations 

presented confirm the sufficiency of the Sylvester’s 

criterion for stable synchronization. which is a sufficient 

synchronization criterion for different coupling 

thresholds. Search is still ongoing to discover sharper 

analytical synchronization threshold that would give the 

exact minimum synchronization threshold for lower and 

higher order dynamical systems. 

 

REFERENCES 

A. Ayotunde Ajayi, S. Kayode Ojo, E. Uchechukwu 

Vincent and N. Abudulahi Njah. Multiswitching 

synchronization of a driven hyperchaotic circuit using 

active backstepping. Journal of Nonlinear Dynamics 

Volume 2014, Article ID 918586, 10 pages (2014) 

 

A. E. Pereda, Electrical synapses and their functional 

interactions with chemical synapses, Nature Rev. 

Neurosci., 15, (2014), 250–263, (2014) 

https://doi.org/10.1038/nrn3708 

 

A. N. Njah, K. S. Ojo: Backstepping control 

synchronization of parametrically and externally excited 

van der Pol Oscillators with application to secure 

communications. International Journal of Modern 

Physics B, vol.24 no23 page 4581-4593 (2010) 

 

C. Sarasola, F.J. Torrealdea , A. d’Anjou , M. Graña. 

Cost of synchronizing different chaotic systems. 

Mathematics and Computers in Simulation 58 309–327 

(2002) 

 

Dumitru Baleanu, Samaneh SadatSajjadi, Jihad H. 

Asad,Amin Jajarmi, and Elham Estiri. Hyperchaotic 

behaviors, optimal control and synchronization of 

anonautonomous cardiac conduction system, Advances 

in Difference Equations       2021:157 

(2021)https://doi.org/10.1186/s13662-021-03320-0 

 

G.-P. Jiang, W. K.-S. Tang, and G. Chen, “A simple 

global synchronization criterion for coupled chaotic 

systems,” Chaos, Solitons and Fractals, vol. 15, no. 5, 

pp. 925–935, 2003. 

 

J. A. K. Suykens, P. F. Curran, and L. O. Chua, 

“Master-slave synchronization using dynamic output 

feedback,” International Journal of Bifurcation and 

Chaos, vol. 7, no. 3, pp. 671–679, 1997, 

 

J. Lu, T. Zhou, and S. Zhang, “Chaos synchronization 

between linearly coupled chaotic systems, Chaos, 

Solitons and Fractals, vol. 14, no. 4, pp. 529–541, 2002. 

 

Jianping Cai, Xiaofeng Wu, and Shuhui Chen. Chaos 

synchronization criteria and costs of Sinusoidally 

coupled horizontal platform systems. Mathematical 

Problems in Engineering Volume 2007, Article ID 

86852, 10 pages, doi:10.1155/2007/86852 

 

K S Ojo, A O Adelakun and A.A Oluyinka. 

Synchronisation of cyclic coupled Josephson junctions 

and its microcontroller-based implementation. Pramana 

– J. Phys. (2019) 92:77 (2019), 

https://doi.org/10.1007/s12043-019-1733-3 

 

K. S. Ojo, A. N Njah, O. I. Olusola. Generalized 

function projective combination-combination 

synchronization of chaos in third order chaotic systems 

Chinese Journal of Physics vol.  53(3)  060703 (2015) 

 

K. S. Ojo, A. N. Njah and O. I. Olusola. Compound-

combination synchronization of chaos in identical and 

different orders chaotic systems. Archives of Control 

Sciences Volume 25(LXI), 2015 No. 4, pages 463–492. 

(2015) 

 

K. S. Ojo, A. N. Njah, G. A. Adebayo: Anti-

synchronization of identical and non-Identical van der 

Pol and Duffing oscillator with both parametric and 

external excitations via backstepping approach. 

International Journal of Modern Physics B, vol. 25, 

no14, page 1957-1969 (2011)  

 



Synchronization Metric for…  Ojo et al. NJP 

140 

         NIGERIAN JOURNAL OF PHYSICS   NJP VOLUME 32(3)          www.njp.nipngn.org 

K. S. Ojo, O. I. Olusola, and A. N. Njah. Chaos 

synchronization of directionally coupled and 

periodically modulated Josephson junction and its 

application to secure communication. The African 

Review of Physics Volume 8(0064) pages 489-498 

(2013) 

 

M. Jalili, Spike phase synchronization in multiplex 

cortical neural networks, Physica A, 466 (2017), 325–

333. https://doi.org/10.1016/j.physa.2016.09.030 

 

M. Shafiei, S. Jafari, F. Parastesh, Time delayed 

chemical synapses and synchronization in mul- tilayer 

neuronal networks with ephaptic inter-layer coupling, 

Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 

105175. https://doi.org/10.1016/j.cnsns.2020.105175 

 

Majid Moradi Zirkohi. An efficient approach for digital 

secure communication using adaptive backstepping fast 

terminal sliding mode control. Computers and Electrical 

Engineering 76 311–322 (2019) 

 

Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How 

basin stability complements the linear-stability 

paradigm. Nat. Phys. 9(2), 89 (2013). 

https://doi.org/10.1038/NPHYS2516 

 

P. S. Skardal, A. Arenas, Higher order interactions in 

complex networks of phase oscillators promote abrupt 

synchronization switching. Communications Physics 3, 

218 (2020). 

 

Piyush Pratap Singh, Jay Prakash Singh, B K Roy. 

Nonlinear active control based hybrid synchronization 

between hyperchaotic and chaotic Systems Third 

International Conference on Advances in Control and 

Optimization of Dynamical Systems. Kanpur, India 

March 13-15, (2014) 

 

Q. Wang, M. Perc, Z. Duan, G. Chen, Synchronization 

transitions on scale-free neuronal networks due to finite 

information transmission delays, Phys. Rev. E, 80 

(2009), 026206. 

https://doi.org/10.1103/PhysRevE.80.026206 

 

Q. Wen, S. Liu, B. Lu, Firing patterns and bifurcation 

analysis of neurons under electromagnetic induction, 

Electron. Res. Archive, 29 (2021), 3205–3226. 

https://doi.org/10.3934/era.2021034 

 

Q. Wu and F. Li, Chinese Phys. Lett. 24, 640 (2007). 

 

Rita Akter, Payer Ahmed. Some real life applications of 

dynamical systems. Iconic Research and Engineering 

Journals, 2(7),(2019), 1-15. 

 

S. Rakshit, B. K. Bera, D. Ghosh, Synchronization in a 

temporal multiplex neuronal hypernetwork, Phys. Rev. 

E, 98 (2018), 032305. 

https://doi.org/10.1103/PhysRevE.98.032305 

 

Shaojie Wang,  Shaobo He, Karthikeyan Rajagopal, 

Anitha Karthikeyan and Kehui Sun. Route to 

hyperchaos and chimera states in a network of modified 

Hindmarsh-Rose neuron model with electromagnetic 

flux and external excitation. Eur. Phys. J. Special Topics 

229, 929–942 (2020) 

 

Strogatz, S.H.: Nonlinear dynamics and chaos: With 

applications to physics, biology, chemistry, and 

engineering, 2nd edn. Studies in Nonlinearity. Perseus 

Books, Cambridge, Mass., (2001 

 

Weiqiu Pan, Tianzeng Li. Finite-Time synchronization 

of fractional-order chaotic systems with different 

structures under stochastic disturbances 

 

X. Wang, H. Gu, B. Lu, Big homoclinic orbit 

bifurcation underlying post-inhibitory rebound spike 

and a novel threshold curve of a neuron, Electron. Res. 

Archive, 29 (2021), 2987–

3015.https://doi.org/10.3934/era.2021023 

 

X. Wu, J. Cai, and M. Wang, “Master-slave chaos 

synchronization criteria for the horizontal platform 

systems via linear state error feedback control,” Journal 

of  Sound and Vibration, vol. 295,, no. 1-2, pp. 378–

387, (2006) 

 

Z. Wang, L. Duan, Q. Cao, Multi-stability involved 

mixed bursting within the coupled pre-Botzinger 

complex neurons, Chin. Phys. B, 27 (2018), 070502. 

https://doi.org/10.1088/1674-1056/27/7/070502 

 

 

 


