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INTRODUCTION 

The solution of the Schrödinger equation (SE) for a 

physical system in quantum mechanics is of great 

importance, because the knowledge of Eigen energy and 

wave function contains all possible information about 

the physical properties of a system under study (Inyang 
et al., 2021). The study of behavior of several physical 

problems in physics requires us to solve the non-

relativistic or relativistic equation. A good description of 

many features of these problems can be obtained using 

non-relativistic models that is the quark-antiquark strong 

interaction is described by a phenomenological potential 

(Abu-shady et al., 2021). Heavy mesons have turned out 

to provide extremely useful probes for the deconfined 

state of matter because the force between a heavy quark 

and anti-quark is weakened due to the presence of 

gluons which lead to the dissociation of it bound states 

(Allosh et al., 2021). The heavy mesons and their 
interaction are well described by the SE (Prasanth et al., 

2020; Inyang et al., 2021).  

 

The solution of the spectral problem for the SE with 

spherically symmetric potentials is of major concern in 

describing the spectra of heavy mesons(Rani et 

al.,2018). Potential models offer a rather good 

description of the mass spectra of heavy mesons such as 

bottomonium, and charmonium (Mansour and Gamal, 

2018). In predicting the mass spectra of heavy mesons, 

confining-type potentials are generally used. The 
holding potential is the Cornell potential with two terms 

one of which is responsible for the Coulomb interaction 

of the quarks and the other corresponds to a confining 

term (Al-Jamel, 2019). In the past, this type of potential 

has been studied by many researchers using different 

techniques. For instance, Al-Jamel (2019) studied the 

mass spectra with Cornell potential using the asymptotic 
iteration method (AIM). Abu-Shady, (2016) solved the 

SE with Cornell potential using the Nikiforov-Uvarov 

(NU) method. The obtained energy equation were used 

to study the mass spectra of heavy mesons. In addition, 

Ciftci, and Kisoglu, (2018) obtained the solutions of SE 

with Cornell potential using the AIM. The masses of the 

heavy mesons such charmonium and bottomonium were 

studied. The confining potentials may be in different 

forms depending upon the interaction of the particles 

within the system. Harmonic oscillator and hydrogen 

atom are the two potentials which solutions to the SE are 

found exactly. There are several approaches to obtaining 
such approximate solutions. For instance, the asymptotic 

iteration method (AIM) as carried out by Al-Jamel, 

(2019), the Laplace transformation method as used by 

Abu-Shady and Khokha, (2018), the super symmetric 

quantum mechanics (SUSYQM) method as applied by 

Abu-Shady and Ikot, (2019) and the series expansion 

method (SEM) used byInyanget al. (2021). Other 

methods include the analytical exact iterative method 

(AEIM) by Khokha et al. (2016), the exact quantization 

rule (EQR) by Inyang et al. (2020) etc. 

 
 

ABSTRACT 

Hulthén plus Hellmann potential was adopted as the quark-antiquark interaction potential for predicting the mass 

spectra of heavy mesons. The adopted potential was made to be temperature-dependent by replacing the screening 

parameter with Debye mass  ( )Dm T . The radial Schrödinger equation was analytically solved using the series 

expansion method and energy eigenvalues were obtained. The energy eigenvalues was used to predict the mass 

spectra of heavy mesons such as charmonium ( )cc  and bottomonium ( )bb . Four special cases were considered 

when some of the potential parameters were set to zero, resulting in Hellmann potential, Yukawa potential, 

Coulomb potential, and Hulthén potential, respectively. The present potential provides satisfying results in 

comparison with experimental data and work of other researchers with a maximum error of 0.034 GeV. 
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The Hulthén potential, (1942) is a short-range potential 

that behaves like a Coulomb potential for small values 

of r and decreases exponentially for large values of r . 

It has been used in many branches of Physics, such as 

Nuclear and Particle Physics, Atomic Physics, Solid-

State Physics, and Chemical Physics (Oyewumi and 
Oluwadare, 2016). 

 

The Hellmann potential,(1935) which is a superposition 

of an attraction Coulomb potential and a Yukawa 

potential has been studied extensively by many authors 

in obtaining the energy of the bound state in atomic, 

nuclear, and particle physics (William et al., 2020). 

 

Recently, there has been great interest in combining two 

potentials in both the relativistic and non-relativistic 

regime (William et al., 2020). The essence of combining 

two or more physical potential models is to have a wider 
range of applications. Hence, in the present work, we 

aim at solving the SE with the combination of Hulthén 

and Hellmann potential (HHP) analytically using series 

expansion method and apply the results to predict the 

mass spectra of heavy mesons such as bottomonium and 

charmonium, in which the quarks are considered as 

spinless particles for easiness 

 

The adopted potential is of the form (William et al., 

2020) 
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where 0 1,A A and 2A  are potential strength parameters 

and  is the screening parameter. To make equation (1) 
temperature dependent, the screening parameter is 

replaced with Debye mass  ( )Dm T which vanishes at 

T  and we have, 
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The expansion of the exponential terms in equation (2) 

(up to order three, in order to model the potential to 

interact in the quark-antiquark system) yields, 
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The substitution of equations (3) and (4) into equation 

(2) gave equation (5) 
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The first term in equation (5) is the Coulomb potential 

that describes the short distance between quarks, while 

the second term is a linear term for confinement feature.  

 
SOLUTIONS OF THE SCHRÖDINGER 

EQUATION WITH HULTHÉN PLUS HELLMANN 

POTENTIAL 
The radial SE was considered (Ibekweet al., 2021) 
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Where l  is angular quantum number taking the values 

0,1,2,3,4…, is the reduced mass for the heavy 

mesons, r  is the inter nuclear separation and nlE  

denotes the energy eigenvalues of the system. 

 

The substitution of equation (5) into equation (7) gives  
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From equation (10)  
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Now make an anzats wave function (Raniet al., 2018) 
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where  and   are positive constants whose values 

are to be determined in terms of potential parameters. 

Differentiating equation (12) twice gives 
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The substitution of equations (12), (13) and (14) into 

equation (8) and dividing by 
2r re   

 gives 
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The function ( )F r  is considered as a series of the form 
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Taking the first and second derivatives of equation (16) 

we obtain, 
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Substituting equations (16), (17) and (18) into equation 

(15), gives 
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By collecting powers of r  in equation (19) we have 
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Equation (20) is linearly independent implying that each 

of the terms is separately equal to Zero, noting that r  is 

a non-zero function; therefore, it is the coefficient of r
that is zero. With this, the relation for each of the terms 

is obtain as follows. 
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The energy equation is obtain using equation (23)  
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Substituting equations (6), (9),(11),(26) and (27) into 

equation (28), the energy eigenvalues of HHP is obtain 

as, 
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Special cases 

Setting 0 0A   in equation (29) ,the energy equation 

for Hellmann potential is obtain: 
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Setting 1 2 0A A   in equation (29), the energy 

equation for Hulthén potential is obtain: 
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Setting 0 2 0A A   in equation (29), the obtain 

energy equation for Coulomb potential is obtain 
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Setting 0 1 0A A   in equation (29), the energy 

equation for Yukawa potential is obtain: 
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                                                                                   (33) 

We test for the accuracy of the predicted results, using a 

Chi square function (Ali et al., 2020) 
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where k runs over selected samples of heavy mesons, 
exp.

iM  is the experimental mass of heavy mesons, while 

Th

iM  is the corresponding theoretical prediction. The 

i  quantity is experimental uncertainty of the masses. 

Intuitively, i  should be one.  

 

RESULTS AND DISCUSSION 

The mass spectra of the heavy mesons such as 

charmonium and bottomonium that have the quark and 

antiquark flavor is calculated by applying the following 

relation (Inyang, et al., 2021). 
 

2 nlM m E 
,                                                     

(35) 

 

where m  is heavy quark mass, and nlE is energy 

eigenvalues.  

 

By substituting equation (29) into equation (35), the 

mass spectra for HHP is obtain as: 
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Table 1: Mass spectra of charmonium in (GeV) ( cm =1.209 GeV,  = 0.6045 GeV, 0A  = 1.422 GeV, 1A  = 2.949 GeV,

2A = - 0.009 GeV, ( )Dm T  = 1.52 GeV,   = 1) 

 

State Present work Abu-Shady, 2016 Ciftci,andKisoglu, 
2018 

Tanabashiet al., 2018 

1S  3.096 3.096 3.096 3.096 
2S 3.686 3.686 3.672 3.686 
1P 3.525 3.255 3.521 3.525 
2P 3.772 3.779 3.951 3.773 
3S 4.040 4.040 4.085 4.040 
4S 4.263 4.269 4.433 4.263 

1D 3.770 3.504 3.800 3.770 
2D 4.159  -  - 4.159 
1F 3.874  -  -  - 

 

Table 2: Mass spectra of bottomonium in (GeV) ( bm =4.823 GeV,  = 2.4115 GeV, 0A = - 0.323 GeV, 1A = 2.110 

GeV, 2A = - 0.031 GeV, ( )Dm T  = 1.52 GeV,   = 1) 

 

State Present work Abu-Shady, 2016 Ciftci, and Kisoglu, 
2018  

Tanabashiet al., 2018 

1S  9.460 9.460 9.462 9.460 
2S 10.023 10.023 10.027 10.023 
1P 9.898 9.619 9.963 9.899 
2P 10.256 10.114 10.299 10.260 

3S 10.355 10.355 10.361 10.355 
4S 10.580 10.567 10.624 10.580 
1D 10.164 9.864 10.209 10.164 
2D 10.306 - - - 
1F 10.209 - - - 

 
 

DISCUSSION  

The prediction of the mass spectra of heavy mesons such 

as charmonium and bottomonium for different quantum 

states using equation (36) are presented in Tables 1 and 

2. The free parameters of equation (36) were then 

obtained by solving two algebraic equations in the case 

of charmonium and bottomonium, respectively.  

 

 For bottomonium bb  and charmonium cc , the 

numerical values of these masses as bm   4.823GeV  

and cm   1.209GeV were adopted (Olive et al., 

2014). Then, the corresponding reduced mass are b   

2.4115GeV  and c  0.6045GeV , respectively. 

The experimental data were taken from Tanabashi et al., 

(2018). It is noticed that the prediction of mass spectra 

of charmonium and bottomonium are in good agreement 

with experimental data and the work of other 

researchers, as presented in Tables 1 and 2. In order to 

test for the accuracy of the predicted results, a Chi 

square function is used to determine the error between 

the experimental data and theoretical predicted values. 

The maximum error in comparison with the 

experimental data is found to be 0.034GeV .  
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